sintering behavior
Recently Published Documents


TOTAL DOCUMENTS

1623
(FIVE YEARS 233)

H-INDEX

48
(FIVE YEARS 7)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 564
Author(s):  
Beate Capraro ◽  
Manuel Heidenreich ◽  
Jörg Töpfer

We have studied the sintering behavior of CT708 LTCC tapes with large CTE of 10.6 ppm/K. This low-k dielectric LTCC material is a quartz-based glass ceramic composite system with partial crystallization of celsian upon firing. The shrinkage, densification and dielectric properties were examined using different heating rates and a sintering temperature of 900 °C. The maximum shrinkage rate is at 836 °C (for a heating rate of 2 K/min) with a sintering density of 95% and a permittivity of ε’ = 5.9 and tan δ = 0.0004 (at 1 GHz). Due to their similar shrinkage and thermal expansion properties, CT708 tapes may be cofired with functional ceramic layers. As an example, we report on cofiring of a multilayer laminate of CT708 and a Sc-substituted hexagonal ferrite for applications as integrated microwave circulator components. This demonstrates the feasibility of cofiring of functional ceramic tapes and tailored LTCC tapes and documents the potential for the realization of complex LTCC multilayer architectures.


Author(s):  
Fatemeh Zakeri‐Shahroudi ◽  
Behrooz Ghasemi ◽  
Hassan Abdolahpour ◽  
Mansour Razavi

2022 ◽  
Vol 60 (1) ◽  
pp. 53-61
Author(s):  
Hanjung Kwon ◽  
Jung-Min Shin

In this paper, we suggest a novel recycling process for hard metal sludge that does not use ammonium paratungstate. Ammonia, which in the conventional recycling process is essential for removing sodium and crystallized tungstate, was not used in the novel process. Instead of ammonia, acid was used to remove the sodium and crystallized tungstate resulting in the formation of tungstic acid (H2WO4). Tungsten powders were successfully synthesized by hydrogen reduction of the tungstic acid through H2O decomposition, WO3 to WO2 reduction, and tungsten metal formation. The tungsten powders prepared from tungstic acid were spherical in shape and had a higher sintering density than the facet-shaped tungsten powders prepared from tungsten oxide. The spherical shape of the tungsten powders enhanced their sinterability and resulted in an increase in the size of grains. This is a result of the high diffusion rate of the atoms along the particle surfaces. Despite having a higher density, the hardness of the sintered tungsten was lower than that of tungsten from tungsten oxide. High energy milling effectively reduced grain size and improved hardness. The hardness of the tungsten prepared from milled tungstic acid was enhanced to a value (max. 471 HV) higher than the best previously reported value (389 HV). In sum, tungsten can be hardened, thereby improving its sinterability and reducing grain size, with tungstic acid prepared using the proposed recycling process.


Author(s):  
Xiaohong Xu ◽  
Qiankun Zhang ◽  
Jianfeng Wu ◽  
Zhenyu Zhang ◽  
Peng Wei ◽  
...  

Author(s):  
Mathilde Labonne ◽  
Jean-Michel Missiaen ◽  
Sabine Lay ◽  
Annie Antoni-Zdziobek ◽  
Olivier Lavigne ◽  
...  

Author(s):  
Minghui Ke ◽  
Wenjuan Wang ◽  
Xudong Yang ◽  
Baoguang Li ◽  
Haibin Li

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1474
Author(s):  
Amarnath Kumar ◽  
Jenna Moledina ◽  
Yuan Liu ◽  
Kuiying Chen ◽  
Prakash C. Patnaik

Beneficial properties achieved by nanostructuring effects in materials have generated tremendous interests in applications in surface engineering, especially in thermal barrier coatings (TBC). Limitations in conventional TBC processing for gas turbines and aero-propulsion systems have been exposed during past decades when rapid progress was made in nano-structuring coating research and developments. The present work is a comprehensive review of the current state of progress in nanostructured TBC (Ntbc) in reference to its microstructure, damage progression, failure mechanisms and a wide range of properties. The review aims to address the comparative performance analysis between the nanostructured and conventional (microstructured) 6–8 wt.% yttrium stabilized zirconia (YSZ) TBC systems. Oxidation resistance and sintering behavior in two TBCs are considered as the central focus of discussion. A few schematics are used to represent major microstructural features and failure progression. A performance analysis is performed for standard 2-layer, as well as functionally graded multilayer, TBC systems. A comparison of TBC characteristics processed by plasma spray and vapor deposition techniques is also made as reference. Compared to the sea of R&D efforts made for conventional TBC (Ctbc), limited experimental studies on Ntbc offers conflicting data, and prediction modeling and computational research are scarce.


Sign in / Sign up

Export Citation Format

Share Document