AbstractFor ℳ and $$ \mathcal{N} $$
N
finite module categories over a finite tensor category $$ \mathcal{C} $$
C
, the category $$ \mathrm{\mathcal{R}}{ex}_{\mathcal{C}} $$
ℛ
ex
C
(ℳ, $$ \mathcal{N} $$
N
) of right exact module functors is a finite module category over the Drinfeld center $$ \mathcal{Z} $$
Z
($$ \mathcal{C} $$
C
). We study the internal Homs of this module category, which we call internal natural transformations. With the help of certain integration functors that map $$ \mathcal{C} $$
C
-$$ \mathcal{C} $$
C
-bimodule functors to objects of $$ \mathcal{Z} $$
Z
($$ \mathcal{C} $$
C
), we express them as ends over internal Homs and define horizontal and vertical compositions. We show that if ℳ and $$ \mathcal{N} $$
N
are exact $$ \mathcal{C} $$
C
-modules and $$ \mathcal{C} $$
C
is pivotal, then the $$ \mathcal{Z} $$
Z
($$ \mathcal{C} $$
C
)-module $$ \mathrm{\mathcal{R}}{ex}_{\mathcal{C}} $$
ℛ
ex
C
(ℳ, $$ \mathcal{N} $$
N
) is exact. We compute its relative Serre functor and show that if ℳ and $$ \mathcal{N} $$
N
are even pivotal module categories, then $$ \mathrm{\mathcal{R}}{ex}_{\mathcal{C}} $$
ℛ
ex
C
(ℳ, $$ \mathcal{N} $$
N
) is pivotal as well. Its internal Ends are then a rich source for Frobenius algebras in $$ \mathcal{Z} $$
Z
($$ \mathcal{C} $$
C
).