Drug Delivery and Translational Research
Latest Publications


TOTAL DOCUMENTS

1099
(FIVE YEARS 489)

H-INDEX

37
(FIVE YEARS 9)

Published By Springer-Verlag

2190-3948, 2190-393x

Author(s):  
Katie Glover ◽  
Essyrose Mathew ◽  
Giulia Pitzanti ◽  
Erin Magee ◽  
Dimitrios A. Lamprou

AbstractThe treatment strategy required for the effective healing of diabetic foot ulcer (DFU) is a complex process that is requiring several combined therapeutic approaches. As a result, there is a significant clinical and economic burden associated in treating DFU. Furthermore, these treatments are often unsuccessful, commonly resulting in lower-limb amputation. The use of drug-loaded scaffolds to treat DFU has previously been investigated using electrospinning and fused deposition modelling (FDM) 3D printing techniques; however, the rapidly evolving field of bioprinting is creating new opportunities for innovation within this research area. In this study, 3D-bioprinted scaffolds with different designs have been fabricated for the delivery of an antibiotic (levoflocixin) to DFU. The scaffolds were fully characterised by a variety of techniques (e.g. SEM, DSC/TGA, FTIR, and mechanical characterisation), demonstrating excellent mechanical properties and providing sustained drug release for 4 weeks. This proof of concept study demonstrates the innovative potential of bioprinting technologies in fabrication of antibiotic scaffolds for the treatment of DFU. Graphical abstract


Author(s):  
Rosana Simón-Vázquez ◽  
Nicolas Tsapis ◽  
Mathilde Lorscheider ◽  
Ainhoa Rodríguez ◽  
Patricia Calleja ◽  
...  

Author(s):  
Wen-Jie Xu ◽  
Jia-Xin Cai ◽  
Yong-Jiang Li ◽  
Jun-Yong Wu ◽  
Daxiong Xiang

Author(s):  
Elena Bellotti ◽  
Gabriella Contarini ◽  
Federica Geraci ◽  
Sebastiano Alfio Torrisi ◽  
Cateno Piazza ◽  
...  

AbstractSchizophrenia is a disorder characterized by cognitive impairment and psychotic symptoms that fluctuate over time and can only be mitigated with the chronic administration of antipsychotics. Here, we propose biodegradable microPlates made of PLGA for the sustained release of risperidone over several weeks. Two microPlate configurations – short: 20 × 20 × 10 μm; tall: 20 × 20 × 20 μm – are engineered and compared to conventional ~ 10 μm PLGA microspheres in terms of risperidone loading and release. Tall microPlates realize the slowest release documenting a 35% risperidone delivery at 100 days with a residual rate of 30 ng/ml. Short microPlates and microspheres present similar release profiles with over 50% of the loaded risperidone delivered within the first 40 days. Then, the therapeutic efficacy of one single intraperitoneal injection of risperidone microPlates is compared to the daily administration of free risperidone in heterozygous knockout mice for dysbindin-1, a clinically relevant mouse model of cognitive and psychiatric liability. In temporal order object recognition tasks, mice treated with risperidone microPlates outperform those receiving free risperidone up to 2, 4, 8, and 12 weeks of observation. This suggests that the sustained release of antipsychotics from one-time microPlate deposition can rescue cognitive impairment in dysbindin mice for up to several weeks. Overall, these results demonstrate that risperidone-loaded microPlates are a promising platform for improving cognitive symptoms associated to schizophrenia. Moreover, the long-term efficacy with one single administration could be of clinical relevance in terms of patient’s compliance and adherence to the treatment regimen. Graphical abstract Single injection of long-acting risperidone-loaded µPL ameliorates the dysbindin-induced deficit in a clinically relevant mouse model of cognitive and psychiatric liability for up to 12 weeks


Sign in / Sign up

Export Citation Format

Share Document