Volume 1: Large Bore Engines; Fuels; Advanced Combustion
Latest Publications


TOTAL DOCUMENTS

56
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By ASME

9780791851982

Author(s):  
Paul S. Wang ◽  
Allen Y. Chen

Large natural gas engines that introduce premixed fuel and air into the engine cylinders allow a small fraction of fuel to evade combustion, which is undesirable. The premixed fuel and air combust via flame propagation. Ahead of the flame front, the unburned fuel and air are driven into crevices, where conditions are not favorable for oxidation. The unburned fuel is a form of waste and a source of potent greenhouse gas emissions. A concept to vent unburned fuel into the crankcase through built-in slots in the liner during the expansion stroke has been tested. This venting process occurs before the exhaust valve opens and the unburned fuel sent into the crankcase can be recycled to the intake side through a closed crankcase ventilation system. The increased communication between the cylinder and the crankcase changes the ring pack dynamics, which results in higher oil consumption. Oil consumption was measured using a sulfur tracer technique. Careful design is required to achieve the best tradeoff between reductions in unburned hydrocarbon emissions and oil control.


Author(s):  
Paras Sethi ◽  
Eric Passow ◽  
Kimm Karrip ◽  
Max Maschewske ◽  
Jason Bieneman ◽  
...  

There are many articles and papers published about the developments in engine downsizing as an effective means in reducing vehicle fuel consumption while improving engine performance. The increase in performance of gasoline turbo charged direct injected (GTDI) engines, in conjunction with diverse vehicle platform performance targets (i.e. towing capability) and higher gear transmissions pushes the engine to operate with higher torques at lower engine speeds. This operating condition has increased the propensity of an abnormal combustion event, known as Low Speed Pre-Ignition (LSPI) or Stochastic Pre-Ignition (SPI). The power cylinder unit (PCU) components exposed to this pre-ignition event can experience failure. The engine manufacturers, as well as MAHLE, continue to ensure engine and PCU component survivability against LSPI by performing life cycle robustness testing. MAHLE’s research of LSPI continues to focus on the robustness of PCU components in the presence of LSPI events, as well as investigating design developments that have the potential to minimize the propensity of LSPI to occur. The test procedure development for evaluating natural LSPI events will be presented. Various test results and parameter sensitivities that were documented during this procedure development, along with the many challenges associated with engine performance repeatability will be discussed. Parameters that were found to influence LSPI propensity, as well as parameters that were found not to influence LSPI propensity will be discussed.


Author(s):  
Zhe Sun ◽  
Zhen Ma ◽  
Xuesong Li ◽  
Min Xu

Non-intrusive measurements are always desirable in flame research, particularly in the study of internal combustion engines where intrusive measurements are usually not applicable. With the use of digital image processing and color analysis, the imaging system can be turned into an abstract multi-spectral system to determine the characteristics of flame emission. First this study conducts a precise calibration to make up a spectral correlation between the camera spectrum responses and the radical emissions of an ethanol diffusion flame. The color model of HSV is used to represent the camera spectrum responses. The actual wavelength of each radical of the diffusion flame has also been examined using a spectrograph. Subsequent experiment is the application of the spectral correlation into a direct injection spark ignition optical engine to research the combustion behavior. Two fuel injectors, different in nozzle configuration, were utilized and tested individually. The high-speed imaging system films hundreds of engine combustion cycles, and each cycle covers the propagation from the flame ignition stage towards the end of combustion. In those cycles, the presence of radicals of interest was captured and represented by Hue degree.


Author(s):  
K. R. Partridge ◽  
P. R. Jha ◽  
H. Mahabadipour ◽  
K. K. Srinivasan ◽  
S. R. Krishnan

Computational simulations of engine combustion processes are increasingly relied upon to lead the design of advanced IC engines. Both computational fluid dynamics (CFD) simulations as well as thermodynamics-based phenomenological 0D or 1D gas dynamics simulations are examples of current simulation strategies. Before simulations can be utilized to guide the design process, they must be validated with experimental results. Typically, the experimental data used for validation of computational simulations include in-cylinder pressure and apparent heat release rate (AHRR) histories. However, the process of comparison of experimental and simulated pressure and AHRR curves is largely qualitative; therefore, the validation process is mostly visual. In the present work, the authors introduce a framework for quantifying uncertainties in experimental pressure data, as well as uncertainties in the “average” AHRR curve that is derived from ensemble-averaged cylinder pressure histories. Predicted AHRR curves from CFD simulations are also quantitatively compared with the experimental AHRR bounded by “uncertainty bands” in the present work.


Author(s):  
Valentin Soloiu ◽  
Jose Moncada ◽  
Remi Gaubert ◽  
Spencer Harp ◽  
Marcel Ilie ◽  
...  

High reactivity gas-to-liquid kerosene (GTL) was investigated with port fuel injection (PFI) of low reactivity n-butanol to conduct reactivity controlled compression ignition (RCCI). In the preliminary stage, the GTL was investigated in a constant volume combustion chamber, and the results indicated a narrower negative temperature coefficient (NTC) region than ultra-low sulfur diesel (ULSD#2). The engine research was conducted at 1500 RPM and various loads with early n-butanol PFI and dual DI pulses of GTL at 60 crank angle degrees (CAD) before top dead center (TDC) and at a timing close to TDC. Boost and PFI fractions (60% by mass n-butanol) were kept constant in order to analyze the fuel reactivity effect on combustion. Conventional diesel combustion (CDC) mode with a single injection and the same combustion phasing (CA50) was used as an emissions baseline for RCCI. RCCI increased ignition delay and combustion duration decreased compared to CDC. Results showed that in order to maintain CA50 for RCCI within 1 CAD, GTL mass required for the first DI pulse to be 15% lower than that of ULSD#2 at higher loads. Peak heat release rate decreased for GTL by 25% given the high volatility and low viscosity of GTL. In general, using GTL, NOx and soot levels were reduced across load points by up to 15% to 30%, respectively, compared to ULSD RCCI, while maintaining RCCI combustion efficiency at 93–97%. Meanwhile, reductions of 85% in soot and 90% in NOx were determined when using RCCI compared to CDC. The more favorable heat release placement of GTL led to increased thermal efficiency by 3% at higher load compared to ULSD#2. The higher volatility and increased reactivity for GTL achieved lower UHC and CO than ULSD#2 at lower load. The study concluded that GTL offered advantages when used with n-butanol for this RCCI fueling configuration.


Author(s):  
Kenan Muric ◽  
Per Tunestal ◽  
Ingemar Magnusson

European and US emission legislation on diesel compression ignition engines has pushed for the development of new types of combustion concepts to reduce hazardous pollutants and increase fuel efficiency. Partially premixed combustion (PPC) has been proposed as one solution to future restrictions on emissions while providing high gross indicated efficiency. The conceptual idea is that the time for the mixing between fuel and air will be longer when ignition delay is increased by addition of high amounts of exhaust gas recirculation (EGR). Increased air-fuel mixing time will lead to lower soot emissions and the high EGR rates will reduce both NOx emissions and combustion flame temperature, which decreases the overall heat transfer. Previous research in heavy-duty gasoline PPC has mostly focused on emissions and efficiency at low and medium load in single-cylinder engines. In this paper a Volvo D13 heavy-duty single-stage VGT engine with a newly developed Wave piston was run at medium and high engine load with a variation in fuel injection pressure. The Wave piston was specifically designed to enhance air-fuel mixing and increase combustion velocity. Two fuels were used in the experiments, PRF70 and Swedish MK1 diesel. Soot-NOx trade-off, combustion characteristics and efficiency were compared for both fuels at 1000 and 2000 Nm engine torque. The results show that at high load the combustion behavior with respect to rate of heat release and heat transfer is very similar between the fuels and no major difference in indicated efficiency could be observed. Peak gross indicated efficiencies were reported to be around 49 % for both fuels at 1000 Nm and slightly above 50 % at 2000 Nm. The new Wave piston made it possible to obtain 1 g/kWh engine-out NOx emissions while still complying with Euro VI legislation for particulate emissions. Soot emissions were generally lower for PRF70 compared to MK1 diesel. We could also conclude that gas exchange performance is a major issue when running high load PPC where high Λ and EGR is required. The single-stage VGT turbocharger could not provide sufficient boost to keep Λ above 1.3 at high EGR rates. This penalized combustion efficiency and soot emissions when reaching Euro VI NOx emission levels (0.3–0.5 g/kWh).


Author(s):  
Muataz Abotabik ◽  
Richard T. Meyer

Major interests in the automotive industry include the use of alternative fuels and reduced fuel usage to address fuel supply security concerns and regulatory requirements. The majority of previous internal combustion engine (ICE) control strategies consider only the First Law of Thermodynamics (FLT). However, FLT is not able to distinguish losses in work potential due to irreversibilities, e.g., up to 25% of fuel exergy may be lost to irreversibilities. To account for these losses, the Second Law of Thermodynamics (SLT) is applicable. The SLT is used to identify the quality of an energy source via availability since not all the energy in a particular energy source is available to produce work; therefore optimal control that includes availability may be another path toward reduced fuel use. Herein, Model Predictive Control (MPC) is developed for both FLT and SLT approaches where fuel consumption is minimized in the former and availability destruction in the latter. Additionally, both include minimization of load tracking error. The controls are evaluated in the simulation of a single cylinder naturally aspirated compression ignition engine that is fueled with either 20% biodiesel and 80% diesel blend or diesel only. Control simulations at a constant engine speed and changing load profile show that the SLT approach results in higher SLT efficiency, reduced specific fuel consumption, and decreased NOx emissions. Further, compared to use of diesel only, use of the biodiesel blend resulted in less SLT efficiency, higher specific fuel consumption, and lower NOx emissions.


Author(s):  
Dominik Mairegger ◽  
Rüdiger Herdin ◽  
Lucas Konstantinoff ◽  
Lukas Möltner

Turbocharged gas engines for combined heat and power units are optimized to increase efficiency while observing and maintaining legitimate exhaust gas emissions. In order to do so, the charge motion is raised. This study investigates the influence of passive prechamber spark plugs in high turbulent combustion chambers. The subjects of investigation are two different gas engine types, one of them running on sewage gas the other one on biogas. The occurring charge motions initiated by the cylinder heads are measured by integrative determination of swirl motion on a flow bench. In addition, three different passive prechamber spark plugs are characterized by a combustion analysis. Each of the three spark plugs comes with a different electrode or prechamber geometry. The resulting combustion and operating conditions are compared while the equal brake mean effective pressure and constant NOx-emissions are sustained. The results of the combustion analysis show a rising influence of the spark plug with increasing air-to-fuel-ratio induced by charge motion. Furthermore, clear differences between the spark plugs are determined: electrode arrangement and prechamber geometry help to influence lean misfire limits, engine smoothness, start behavior and ignition delay. The results indicate the capability of spark plugs to increase lifetime and engine efficiency.


Author(s):  
Karthik V. Puduppakkam ◽  
Chitralkumar V. Naik ◽  
Ellen Meeks

A continued challenge to engine combustion simulation is predicting the impact of fuel-composition variability on performance and emissions. Diesel fuel properties, such as cetane number, aromatic content and volatility, significantly impact combustion phasing and emissions. Capturing such fuel property effects is critical to predictive engine combustion modeling. In this work, we focus on accurately modeling diesel fuel effects on combustion and emissions. Engine modeling is performed with 3D CFD using multi-component fuel models, and detailed chemical kinetics. Diesel FACE fuels (Fuels for Advanced Combustion Engines) have been considered in this study as representative of street fuel variability. The CFD modeling simulates experiments performed at Oak Ridge National Laboratory (ORNL) [1] using the diesel FACE fuels in a light-duty single-cylinder direct-injection engine. These ORNL experiments evaluated fuel effects on combustion phasing and emissions. The actual FACE fuels are used directly in engine experiments while surrogate-fuel blends that are tailored to represent the FACE fuels are used in the modeling. The 3D CFD simulations include spray dynamics and turbulent mixing. We first establish a methodology to define a model fuel that captures diesel fuel property effects. Such a model should be practically useful in terms of acceptable computational turnaround time in engine CFD simulations, even as we use sophisticated fuel surrogates and detailed chemistry. Towards these goals, multi-component fuel surrogates have been developed for several FACE fuels, where the associated kinetics mechanisms are available in a model-fuels database. A surrogate blending technique has been employed to generate the multi-component surrogates, so that they match selected FACE fuel properties such as cetane number, chemical classes such as aromatics content, T50 and T90 distillation points, lower heating value and H/C molar ratio. Starting from a well validated comprehensive gas-phase chemistry, an automated method has been used for extracting a reduced chemistry that satisfies desired accuracy and is reasonable for use in CFD. Results show the level of modeling necessary to capture fuel-property trends under these widely varying engine conditions.


Author(s):  
Reed Hanson ◽  
Ashwin Salvi ◽  
Fabien Redon ◽  
Gerhard Regner

The Achates Power Inc. (API) Opposed Piston (OP) Engine architecture provides fundamental advantages that increase thermal efficiency over current poppet valve 4 stroke engines. In this paper, combustion performance of diesel and gasoline compression ignition (GCI) combustion in a medium duty, OP engine are shown. By using GCI, NOx and/or soot reductions can be seen compared to diesel combustion at similar or increased thermal efficiencies. The results also show that high combustion efficiency can be achieved with GCI combustion with acceptable noise and stability over the same load range as diesel combustion in an OP engine.


Sign in / Sign up

Export Citation Format

Share Document