Volume 2: 29th Design Automation Conference, Parts A and B
Latest Publications


TOTAL DOCUMENTS

143
(FIVE YEARS 0)

H-INDEX

10
(FIVE YEARS 0)

Published By ASMEDC

0791837009

Author(s):  
Seong-Ho Kang ◽  
Delbert Tesar

A modular robot system is a collection of actuators, links, and connections that can be arbitrarily assembled into a number of different robot configurations and sequences. High performance modular robots require more than just sophisticated controls. They also need top-quality mechanical components. Bearings in particular must operate well at low speed, have high rotational accuracy, be compact for low weight, and especially be stiff for high positional accuracy. To ensure the successful use of bearings in precision modular robots, knowledge of the bearing properties and requirements are investigated. Background information on various topics such as modular robots, precision modular actuators, and their error sources are described with respect to precision engineering. Extensive literature on thin section bearings is reviewed to examine their use in precision robotic applications. Theoretical studies are performed to calculate bearing stiffness adopting a methodology based on Hertzian theory. This approach is applied to analyze two proposed designs of equivalent-sized crossed roller and four-point bearings, principal bearings used for transmitting all the payload and mass of the robot structure. The maximum deflections and contact stresses for the proposed actuator assembly and loading conditions are estimated and compared including a range of general bearing properties such as friction, cost, and shock resistance.


Author(s):  
Victor Oduguwa ◽  
Rajkumar Roy ◽  
Didier Farrugia

Most of the algorithmic engineering design optimisation approaches reported in the literature aims to find the best set of solutions within a quantitative (QT) search space of the given problem while ignoring related qualitative (QL) issues. These QL issues can be very important and by ignoring them in the optimisation search, can have expensive consequences especially for real world problems. This paper presents a new integrated design optimisation approach for QT and QL search space. The proposed solution approach is based on design of experiment methods and fuzzy logic principles for building the required QL models, and evolutionary multi-objective optimisation technique for solving the design problem. The proposed technique was applied to a two objectives rod rolling problem. The results obtained demonstrate that the proposed solution approach can be used to solve real world problems taking into account the related QL evaluation of the design problem.


Author(s):  
Pierre M. Larochelle

In this paper we present a novel dyad dimensional synthesis technique for approximate motion synthesis. The methodology utilizes an analytic representation of the dyad’s constraint manifold that is parameterized by its dimensional synthesis variables. Nonlinear optimization techniques are then employed to minimize the distance from the dyad’s constraint manifold to a finite number of desired locations of the workpiece. The result is an approximate motion dimensional synthesis technique that is applicable to planar, spherical, and spatial dyads. Here, we specifically address the planar RR, spherical RR and spatial CC dyads since these are often found in the kinematic structure of robotic systems and mechanisms. These dyads may be combined serially to form a complex open chain (e.g. a robot) or when connected back to the fixed link they may be joined so as to form one or more closed chains (e.g. a linkage, a parallel mechanism, or a platform). Finally, we present some initial numerical design case studies that demonstrate the utility of the synthesis technique.


Author(s):  
Alessandro Giassi ◽  
Fouad Bennis ◽  
Jean-Jacques Maisonneuve

In the context of concurrent engineering, this paper presents a quite innovative approach to the collaborative optimisation process, which couples a multi-objective genetic algorithm with an asynchronous communication tool. To illustrate this methodology, three European companies’ collaboration on the optimisation of a ship hull is described. Our study demonstrates that when multi-objective optimisation is carried out in a distributed manner it can provide a powerful tool for concurrent product design.


Author(s):  
Petter Krus ◽  
Johan Andersson

Design optimization is becoming and increasingly important tool for design. In order to have an impact on the product development process it must permeate all levels of the design in such a way that a holistic view is maintained through all stages of the design. One important area is in the case of optimization based on simulation, which generally requires non-gradient methods and as a consequence direct-search methods is a natural choice. The idea in this paper is to use the design optimization approach in the optimization algorithm itself in order to produce an efficient and robust optimization algorithm. The result is a single performance index to measure the effectiveness of an optimization algorithm, and the COMPLEX-RF optimization algorithm, with optimized parameters.


Author(s):  
Zhihuang Dai ◽  
Michael J. Scott ◽  
Zissimos P. Mourelatos

There are two sorts of uncertainty inherent in engineering design, random uncertainty and epistemic uncertainty. Random, or stochastic, uncertainty deals with the randomness or predictability of an event. It is well understood, easily modelled using classical probability, and ideal for such uncertainties as variations in manufacturing processes or material properties. Epistemic uncertainty deals with our lack of knowledge, our lack of information, and our own and others’ subjectivity concerning design parameters. While there are many methods to incorporate random uncertainty in a design process, there are fewer that consider epistemic uncertainty. There are fewer still that attempt to incorporate both sorts of uncertainty, and those that do usually attempt to model both sorts using the same uncertainty model. Two methods, a range method and a fuzzy sets approach, are proposed to achieve designs that are robust to both epistemic uncertainty and random uncertainty. Both methods incorporate preference aggregation methods to achieve more appropriate trade-offs between performance and variability when considering both sorts of uncertainty. The proposed models for epistemic uncertainty are combined with existing models for stochastic uncertainty in a two-step process. An illustrative example incorporating subjectivity concerning design parameters is presented.


Author(s):  
Alisha Hammond ◽  
Alan R. Parkinson

In recent years a number of practicing engineers have discussed the virtues of exactly constrained (EC) mechanical assemblies. While found by engineers in industry to have many benefits, EC designs remain somewhat unrecognized by academia. One reason for this minimal exposure may be the lack of a mathematical foundation for such designs. EC designs can be analyzed quite simply by understanding that they are statically determinate. This paper describes the history and current background for EC designs. It also begins to develop the mathematical foundation for EC design based on equations of equilibrium. Finally, it examines a Monte Carlo simulation of the effects of variation on EC assemblies vs. over-constrained assemblies. The EC design assembles 100% of the time, while the over-constrained design assembles only 50% of the time with greater error.


Author(s):  
Daeyoon Jung ◽  
Hae Chang Gea

To accommodate the dual objectives of many engineering applications, one to minimize the mean compliance for the stiffest structure under normal service condition and the other to maximize the strain energy for energy absorption during excessive loadings, topology optimization with a multi-material model is applied to the design of energy absorbing structure in this paper. The effective properties of the three-phase material are derived using a spherical micro-inclusion model. The dual objectives are combined in a ratio formation. Numerical examples from the proposed method are presented and discussed.


Author(s):  
Dennis W. Hong ◽  
Raymond J. Cipra

One of the inherent problems of multi-limbed mobile robotic systems is the problem of multi-contact force distribution; the contact forces and moments at the feet required to support it and those required by its tasks are indeterminate. A new strategy for choosing an optimal solution for the contact force distribution of multi-limbed robots with three feet in contact with the environment in three-dimensional space is presented. The optimal solution is found using a two-step approach: first finding the description of the entire solution space for the contact force distribution for a statically stable stance under friction constraints, and then choosing an optimal solution in this solution space which maximizes the objectives given by the chosen optimization criteria. An incremental strategy of opening up the friction cones is developed to produce the optimal solution which is defined as the one whose foot contact force vector is closest to the surface normal vector for robustness against slipping. The procedure is aided by using the “force space graph” which indicates where this solution is positioned in the solution space to give insight into the quality of the chosen solution and to provide robustness against disturbances. The “margin against slip with contact point priority” approach is also presented which finds an optimal solution with different priorities given to each foot contact point for the case when one foot is more critical than the other. Examples are presented to illustrate certain aspects of the method and ideas for other optimization criteria are discussed.


Author(s):  
Stephen L. Canfield ◽  
Patrick V. Hull ◽  
James W. Beard

Application of the compliant design methodology to manipulators has held the promise of delivering manipulators with many significant advantages, including low cost, small size, low backlash and friction, and high positioning accuracy. This approach has been demonstrated in part by Canfield et. al., [1] to a class of three-degree-of-freedom manipulators based on a specific parallel architecture topology. In [1], the authors’ intent was to develop two compliant manipulators that exhibit several of the features associated with compliant devices. However, upon review of the manipulators resulting from this work it is observed that many of the benefits that were expected were lost at some point in the design process, resulting in manipulators that were large, expensive and suffered significantly from required assembly and inaccuracies in manufacture. This paper will revisit the problem addressed in [1], using the modeling tools demonstrated in that paper but will present several improved development measures that will result in manipulators that exhibit multiple features promised by compliant devices. The resulting manipulators will then be compared against the manipulators from [1] with a summary of the performance and characteristics of each given and evaluated.


Sign in / Sign up

Export Citation Format

Share Document