International Journal of Software Innovation
Latest Publications


TOTAL DOCUMENTS

233
(FIVE YEARS 100)

H-INDEX

6
(FIVE YEARS 2)

Published By Igi Global

2166-7179, 2166-7160

2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Effective productivity estimates of fresh produced crops are very essential for efficient farming, commercial planning, and logistical support. In the past ten years, machine learning (ML) algorithms have been widely used for grading and classification of agricultural products in agriculture sector. However, the precise and accurate assessment of the maturity level of tomatoes using ML algorithms is still a quite challenging to achieve due to these algorithms being reliant on hand crafted features. Hence, in this paper we propose a deep learning based tomato maturity grading system that helps to increase the accuracy and adaptability of maturity grading tasks with less amount of training data. The performance of proposed system is assessed on the real tomato datasets collected from the open fields using Nikon D3500 CCD camera. The proposed approach achieved an average maturity classification accuracy of 99.8 % which seems to be quite promising in comparison to the other state of art methods.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Brain tumor is a severe cancer disease caused by uncontrollable and abnormal partitioning of cells. Timely disease detection and treatment plans lead to the increased life expectancy of patients. Automated detection and classification of brain tumor are a more challenging process which is based on the clinician’s knowledge and experience. For this fact, one of the most practical and important techniques is to use deep learning. Recent progress in the fields of deep learning has helped the clinician’s in medical imaging for medical diagnosis of brain tumor. In this paper, we present a comparison of Deep Convolutional Neural Network models for automatically binary classification query MRI images dataset with the goal of taking precision tools to health professionals based on fined recent versions of DenseNet, Xception, NASNet-A, and VGGNet. The experiments were conducted using an MRI open dataset of 3,762 images. Other performance measures used in the study are the area under precision, recall, and specificity.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Developing a system for sign language recognition becomes essential for the deaf as well as a mute person. The recognition system acts as a translator between a disabled and an able person. This eliminates the hindrances in the exchange of ideas. Most of the existing systems are very poorly designed with limited support for the needs of their day to day facilities. The proposed system embedded with gesture recognition capability has been introduced here which extracts signs from a video sequence and displays them on screen. On the other hand, a speech to text as well as text to speech system is also introduced to further facilitate the grieved people. To get the best out of a human-computer relationship, the proposed solution consists of various cutting-edge technologies and Machine Learning based sign recognition models that have been trained by using TensorFlow and Keras library. The proposed architecture works better than several gesture recognition techniques like background elimination and conversion to HSV


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Innovations in computer technologies have revolutionized attention in recent years. Data analytics has emerged as a promising tool for determination problems in various health care connected disciplines. The effective utilization of knowledge mining in deeply noticeable fields like e-business, promoting and retail has prompted application in completely different businesses and divisions. Among these components merely finding is the medical services. Medical services organizations can reduce down on medical services expense and furnish better consideration with the help of predictive analysis. Enormous information likewise helps in diminishing medicine mistakes by improving budgetary and regulatory execution, and decrease readmission. The paper aims at systematic collection of patient-related healthcare data ,analyse through Microsoft Power BI after some transformations of data and determine major disciplines to improve the patient engagement, health system management, diagnosis and cost reduction.


2022 ◽  
Vol 10 (1) ◽  
pp. 1-12
Author(s):  
Iftekhar Hossain ◽  
Naushin Nower

Traffic jam is increasingly aggravating in almost every urban area. Traffic forecast, traffic modeling, visualization can help to provide appropriate route and time for traveling and thus provides a significant impact on traffic jam reduction. For traffic forecasting, modeling and visualization, city-wide traffic data collection and analysis are needed, which is still challenging in many aspects. This paper aims to develop a tool for acquiring and processing traffic data from Google Maps that can be used for forecasting, modeling, and visualization. Dhaka city is used as a case study since there is no infrastructure available for traffic data collection. The traffic flow intensity of the road is analyzed to determine the congestion of the road. The flow intensity is used for traffic modeling, visualization, traffic prediction and many more.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Software testing is an activity conducted to test the software under test. It has two approaches: manual testing and automation testing. Automation testing is an approach of software testing in which programming scripts are written to automate the process of testing. There are some software development projects under development phase for which automated testing is suitable to use and other requires manual testing. It depends on factors like project requirements nature, team which is working on the project, technology on which software is developing and intended audience that may influence the suitability of automated testing for certain software development project. In this paper we have developed machine learning model for prediction of automated testing adoption. We have used chi-square test for finding factors’ correlation and PART classifier for model development. Accuracy of our proposed model is 93.1624%.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

: The medical diagnostic process works very similarly to the Case Based Reasoning (CBR) cycle scheme. CBR is a problem solving approach based on the reuse of past experiences called cases. To improve the performance of the retrieval phase, a Random Forest (RF) model is proposed, in this respect we used this algorithm in three different ways (three different algorithms): Classic Random Forest (CRF) algorithm, Random Forest with Feature Selection (RF_FS) algorithm where we selected the most important attributes and deleted the less important ones and Weighted Random Forest (WRF) algorithm where we weighted the most important attributes by giving them more weight. We did this by multiplying the entropy with the weight corresponding to each attribute.We tested our three algorithms CRF, RF_FS and WRF with CBR on data from 11 medical databases and compared the results they produced. We found that WRF and RF_FS give better results than CRF. The experiemental results show the performance and robustess of the proposed approach.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

Software failure prediction is an important activity during agile software development as it can help managers to identify the failure modules. Thus, it can reduce the test time, cost and assign testing resources efficiently. RapidMiner Studio9.4 has been used to perform all the required steps from preparing the primary data to visualizing the results and evaluating the outputs, as well as verifying and improving them in a unified environment. Two datasets are used in this work, the results for the first one indicate that the percentage of failure to predict the time used in the test is for all 181 rows, for all test times recorded, is 3% for Mean time between failures (MTBF). Whereas, SVM achieved a 97% success in predicting compared to previous work whose results indicated that the use of Administrative Delay Time (ADT) achieved a statistically significant overall success rate of 93.5%. At the same time, the second dataset result indicates that the percentage of failure to predict the time used is 1.5% for MTBF, SVM achieved 98.5% prediction.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

In distributed information retrieval systems, information in web should be ranked based on a combination of multiple features. Linear combination of ranks has been the dominant approach due to its simplicity and efficiency. Such a combination scheme in distributed infrastructure requires that ranks in resources or agents are comparable to each other. The main challenge is how to transform the raw rank values of different criteria appropriately to make them comparable before any combination. In this manuscript, we will demonstrate how to rank Web documents based on its resource-provided information stream and how to combine and incorporate several raking schemas in one time. The system was tested on the queries provided by a Text Retrieval Conference (TREC), and our experimental results showed that it is robust and efficient compared with similar platforms that used offline data resources.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

In this paper, we introduce a new method for face recognition in multi-resolution images. The proposed method is composed of two phases: an off-line phase and an inference phase. In the off-line phase, we built the Kernel Partial Least Squares (KPLS) regression model to map the LR facial features to HR ones. The KPLS predictor was then used in the inference phase to map HR features from LR features. We applied in both phases the Block-Based Discrete Cosine Transform (BBDCT) descriptor to enhance the facial feature description. Finally, the identity matching was carried out with the K-Nearest Neighbor (KNN) classifier. Experimental study was conducted on the AR and ORL databases and the obtained results proved the efficiency of the proposed method to deal with LR and VLR face recognition problem.


Sign in / Sign up

Export Citation Format

Share Document