Journal of Structures
Latest Publications


TOTAL DOCUMENTS

40
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Published By Hindawi Limited

2314-6494, 2356-766x

2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Niall Holmes ◽  
Darran Kierans ◽  
Patrick Crean

The paper presents a new method of stiffening CHS L-joints and compares it against current stiffened and unstiffened moment connections. The method is derived from studying the failure modes of existing methods, typically local buckling and ovalisation of the section. Unstiffened right-angled CHS connections have been shown to be weak due to local buckling and ovalisation. Stiffing plates placed across the joint can increase the moment capacity of the section by preventing ovalisation of the section but is architecturally unsightly. An alternative approach, where a stiffening plate welded vertically inside both the column and beam, outperformed the unstiffened frame plate in terms of reduced ovalisation and increased load capacity. It was also found to perform better than the stiffened connection in terms of both vertical and horizontal deflection. However, more research is required to ensure a fully restrained connection to satisfy codes of practice and constructible.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Rupert G. Williams ◽  
William A. Wilson ◽  
Reisa Dookeeram

In recent years, there has been a considerable increase in perceived risks of blast loading attacks or similar incidents on structures. Blast design is therefore a necessary aspect of the design for building structures globally and as such building design must adapt accordingly. Presented herein is an attempt to determine the numerical response of a seismically designed single-degree-of-freedom (SDOF) structure to blast loading. The SDOF model in the form of a portal frame was designed to withstand a typical seismic occurrence in Northern Trinidad. Blast loads caused by applying a 500 kg charge weight of TNT at standoff distances of 45 m, 33 m, and 20 m were then applied to the model. The blast loading on the frame was determined using empirical methods. The analytical study showed that the seismically designed SDOF plane frame model entered the plastic region during the application of the blast load occurring up to the critical standoff distance.


2015 ◽  
Vol 2015 ◽  
pp. 1-16
Author(s):  
Liu Mei ◽  
Akira Mita ◽  
Jin Zhou

A substructural damage identification approach based on changes in the first AR model coefficient matrix is proposed in this paper to identify structural damage including its location and severity. Firstly, a substructure approach is adopted in the procedure to divide a complete structure into several substructures in order to significantly reduce the number of unknown parameters for each substructure so that damage identification processes can be independently conducted on each substructure. To establish a relation between changes in AR model coefficients and structural damage for each substructure, a theoretical derivation is presented. Thus the accelerations are fed into ARMAX models to determine the AR model coefficients for each substructure under undamaged and various damaged conditions, based on which changes in the first AR model coefficient matrix (CFAR) is obtained and adopted as the damage indicator for the proposed substructure damage identification approach. To better assess the performance of the proposed procedure, a numerical simulation and an experimental verification of the proposed approach are then carried out and the results show that the proposed procedure can successfully locate and quantify the damage in both simulation and laboratory experiment.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
James Sae Siew ◽  
Olivia Mirza ◽  
Sakdirat Kaewunruen

Rail turnouts are built to enable flexibility in the rail network as they allow for vehicles to switch between various tracks, therefore maximizing the utilisation of existing rail infrastructure. In general, railway turnouts are a safety-critical and expensive feature to a rail system as they suffer aggressive operational loads, in comparison to a plain rail track, and thus require frequent monitoring and maintenance. In practice, great consideration is given to the dynamic interaction between the turnouts components as a failed component may have adverse effects on the performance of neighbouring components. This paper presents a nonlinear 3D finite element (FE) model, taking into account the nonlinearities of materials, in order to evaluate the interaction and behaviour of turnout components. Using ABAQUS, the finite element model was developed to simulate standard concrete bearers with 60 kg/m rail and with a tangential turnout radius of 250 m. The turnout structure is supported by a ballast layer, which is represented by a nonlinearly deformable tensionless solid. The numerical studies firstly demonstrate the importance of load transfer mechanisms in the failure modes of the turnout components. The outcome will lead to a better design and maintenance of railway turnouts, improving public safety and operational reliability.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jin Zhou ◽  
Akira Mita ◽  
Liu Mei

The posterior density of structural parameters conditioned by the measurement is obtained by a differential evolution adaptive Metropolis algorithm (DREAM). The surface of the formal log-likelihood measure is studied considering the uncertainty of measurement error to illustrate the problem of equifinality. To overcome the problem of equifinality, the first two derivatives of the log-likelihood measure are proposed to formulate a new informal likelihood measure for the sake of improving the accuracy of the estimator. Moreover, the proposed measure also reduces the standard deviation (uncertain range) of the posterior samples. The benefit of the proposed approach is demonstrated by simulations on identifying the structural parameters with limit output data and noise polluted measurements.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Ivan A. Campos Varela ◽  
Walter H. Gerstle ◽  
Stephen Dwyer

Engineering certification for the installation of solar photovoltaic modules on wood roofs is often denied because existing wood roofs do not meet current building codes. Rather than requiring expensive structural retrofits, we desire to show that many roofs are actually sufficiently strong if the effect of composite action produced by joist-sheathing interaction is considered. In a series of laboratory experiments using a limited number of two-by-four wood joists with and without sheathing panels, conventionally sheathed stud-grade joists, surprisingly, exhibited between 18% and 63% higher nominal strength than similar bare joists. To explain this strength increase, a simple model was developed to predict the strengths of the nailed partially composite sections, but the model only justifies a 1.4% to 3.8% increase in bending strength of joists with an allowable bending strength of 1000 psi. More testing is indicated to resolve this discrepancy between laboratory results and analytical modeling results. In addition to elucidating nonlinear partial composite behavior of existing roof systems, this paper shows that, with minor changes in roof framing practices, strength increases of 70% or more are achievable, compared to the strengths of conventionally sheathed joists.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Peter Samir ◽  
George Morcous

Steel trusses are the most popular system for supporting long-span roofs in commercial buildings, such as warehouses and aircraft hangars. There are several advantages of steel trusses, such as lightweight, ease of handling and erection, and geometric flexibility. However, they have some drawbacks, such as high material and maintenance cost, and low fire resistance. In this paper, a precast concrete truss is proposed as an alternative to steel trusses for spans up to 48 m (160 ft) without intermediate supports. The proposed design is easy to produce and has lower construction and maintenance costs than steel trusses. The truss consists of two segments that are formed using standard bridge girder forms with block-outs in the web which result in having diagonals and vertical members and reduces girder weight. The two segments are then connected using a wet joint and post-tensioned longitudinally to form a crowned truss. The proposed design optimizes the truss-girder member locations, cross-sections, and material use. A 9 m (30 ft) long truss specimen is constructed using self-consolidated concrete to investigate the constructability and structural capacity of the proposed design. A finite element analysis of the specimen is conducted to investigate stresses at truss diagonals, verticals, and connections. Testing results indicate the production and structural efficiency of the developed system.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
H. A. Khawaja ◽  
T. A. Bertelsen ◽  
R. Andreassen ◽  
M. Moatamedi

The paper gives the study of the response of carbon fiber reinforced polymers (CRFP) quasi-isotropic shell structures under the influence of dynamic loading. The quasi-isotropic CRFP shell specimens are fabricated using Multipreg E720 laminates. These laminates are laid in such a way that shell structure has equal strength and mechanical properties in the two-dimensional (2D) plane and hence can be regarded as quasi-isotropic. In this study, the dynamic loading is generated using shock waves in a shock tube experimental setup. The strain and pressure data is collected from the experiments. Additional tests are carried out using Material Test System (MTS) for both tensile and flexural response of CRFP. Results obtained from experiments are compared with numerical simulations using ANSYS Multiphysics 14.0 finite element method (FEM) package. The numerical simulation and experimental results are found to be in good agreement.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Santhosh M. Malkapur ◽  
Ashish Anand ◽  
Amit Prakash Pandey ◽  
Alok Ojha ◽  
Nimesh Mani ◽  
...  

Disposal of solid wastes has been a major problem all over the world. Out of all the different types of solid wastes, the major challenge of disposal is posed by the ever increasing volumes of plastic wastes. While several methods are in practice, producing newer useful materials by recycling of such plastic wastes is, by far, the best method of their disposal. One such possible method is to use the waste plastics as an ingredient in the production of the concrete mixes in the construction industry. The present study aims to investigate the relative contributions of the various mix parameters to the mechanical properties of concrete mixes produced with waste plastics as partial replacement (10–30% by volume) to coarse aggregates. Initially, strength test results of a set of trial mixes, selected based on Taguchi’s design of experiments (DOE) method are obtained. A detailed analysis of the experimental results is carried out to study the effect of using waste plastics as a partial replacement to coarse aggregates on the strength parameters of these concrete mixes. It is found that all these trial mixes have performed satisfactorily in terms of workability in the fresh state and strength properties in their hardened state.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Alexandre da Silva Scari ◽  
Bruno Cesar Pockszevnicki ◽  
Jánes Landre Junior ◽  
Pedro Americo Almeida Magalhaes Junior

Short cylindrical specimens made of AA6082-T6 aluminum alloy were studied experimentally (compression tests), analytically (normalized Cockcroft-Latham criteria—nCL), and numerically (finite element analysis—FEA). The mechanical properties were determined with the stress-strain curves by the Hollomon equation. The elastic modulus obtained experimentally differs from the real value, as expected, and it is also explained. Finite element (FE) analysis was carried out with satisfactory correlation to the experimental results, as it differs about 1,5% from the damage analysis by the nCL concerning the experimental data obtained by compression tests.


Sign in / Sign up

Export Citation Format

Share Document