npj Biofilms and Microbiomes
Latest Publications


TOTAL DOCUMENTS

292
(FIVE YEARS 150)

H-INDEX

30
(FIVE YEARS 6)

Published By Springer Nature

2055-5008

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Amnon Amir ◽  
Ortal Erez-Granat ◽  
Tzipi Braun ◽  
Katya Sosnovski ◽  
Rotem Hadar ◽  
...  

AbstractThe human gut microbiome develops during the first years of life, followed by a relatively stable adult microbiome. Day care attendance is a drastic change that exposes children to a large group of peers in a diverse environment for prolonged periods, at this critical time of microbial development, and therefore has the potential to affect microbial composition. We characterize the effect of day care on the gut microbial development throughout a single school year in 61 children from 4 different day care facilities, and in additional 24 age-matched home care children (n = 268 samples, median age of entering the study was 12 months). We show that day care attendance is a significant and impactful factor in shaping the microbial composition of the growing child, the specific daycare facility and class influence the gut microbiome, and each child becomes more similar to others in their day care. Furthermore, in comparison to home care children, day care children have a different gut microbial composition, with enrichment of taxa more frequently observed in older populations. Our results provide evidence that daycare may be an external factor that contributes to gut microbiome maturation and make-up in early childhood.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Wei Yan ◽  
A. Brantley Hall ◽  
Xiaofang Jiang

AbstractAntibiotic-resistance genes (ARGs) regulated by invertible promoters can mitigate the fitness cost of maintaining ARGs in the absence of antibiotics and could potentially prolong the persistence of ARGs in bacterial populations. However, the origin, prevalence, and distribution of these ARGs regulated by invertible promoters remains poorly understood. Here, we sought to assess the threat posed by ARGs regulated by invertible promoters by systematically searching for ARGs regulated by invertible promoters in the human gut microbiome and examining their origin, prevalence, and distribution. Through metagenomic assembly of 2227 human gut metagenomes and genomic analysis of the Unified Human Gastrointestinal Genome (UHGG) collection, we identified ARGs regulated by invertible promoters and categorized them into three classes based on the invertase-regulating phase variation. In the human gut microbiome, ARGs regulated by invertible promoters are exclusively found in Bacteroidales species. Through genomic analysis, we observed that ARGs regulated by invertible promoters have convergently originated from ARG insertions into glycan-synthesis loci that were regulated by invertible promoters at least three times. Moreover, all three classes of invertible promoters regulating ARGs are located within integrative conjugative elements (ICEs). Therefore, horizontal transfer via ICEs could explain the wide taxonomic distribution of ARGs regulated by invertible promoters. Overall, these findings reveal that glycan-synthesis loci regulated by invertible promoters in Bacteroidales species are an important hotspot for the emergence of clinically-relevant ARGs regulated by invertible promoters.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Silambarasan Anbumani ◽  
Aldeliane M. da Silva ◽  
Isis G. B. Carvalho ◽  
Eduarda Regina Fischer ◽  
Mariana de Souza e Silva ◽  
...  

AbstractThe morphological plasticity of bacteria to form filamentous cells commonly represents an adaptive strategy induced by stresses. In contrast, for diverse human and plant pathogens, filamentous cells have been recently observed during biofilm formation, but their functions and triggering mechanisms remain unclear. To experimentally identify the underlying function and hypothesized cell communication triggers of such cell morphogenesis, spatially controlled cell patterning is pivotal. Here, we demonstrate highly selective cell adhesion of the biofilm-forming phytopathogen Xylella fastidiosa to gold-patterned SiO2 substrates with well-defined geometries and dimensions. The consequent control of both cell density and distances between cell clusters demonstrated that filamentous cell formation depends on cell cluster density, and their ability to interconnect neighboring cell clusters is distance-dependent. This process allows the creation of large interconnected cell clusters that form the structural framework for macroscale biofilms. The addition of diffusible signaling molecules from supernatant extracts provides evidence that cell filamentation is induced by quorum sensing. These findings and our innovative platform could facilitate therapeutic developments targeting biofilm formation mechanisms of X. fastidiosa and other pathogens.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Antonio Palomba ◽  
Alessandro Tanca ◽  
Marcello Abbondio ◽  
Rosangela Sau ◽  
Monica Serra ◽  
...  

AbstractDiet is a key factor influencing gut microbiota (GM) composition and functions, which in turn affect host health. Among dietary regimens, time-restricted (TR) feeding has been associated to numerous health benefits. The impact of TR feeding on the GM composition has been mostly explored by means of metagenomic sequencing. To date, however, little is known about the modulation of GM functions by this dietary regimen. Here, we analyzed the effects of TR feeding on GM functions by evaluating protein expression changes in a rat model through a metaproteomic approach. We observed that TR feeding has a relevant impact on GM functions, specifically leading to an increased abundance of several enzymes involved in carbohydrate and protein metabolism and expressed by Lactobacillus spp. and Akkermansia muciniphila. Taken together, these results contribute to deepening our knowledge about the key relationship between diet, GM, and health.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Andrew D. McCall ◽  
Ruvini U. Pathirana ◽  
Aditi Prabhakar ◽  
Paul J. Cullen ◽  
Mira Edgerton

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sherrianne Ng ◽  
Muxuan Chen ◽  
Samit Kundu ◽  
Xuefei Wang ◽  
Zuyi Zhou ◽  
...  

AbstractVaginal microbiota-host interactions are linked to preterm birth (PTB), which continues to be the primary cause of global childhood mortality. Due to population size, the majority of PTB occurs in Asia, yet there have been few studies of the pregnancy vaginal microbiota in Asian populations. Here, we characterized the vaginal microbiome of 2689 pregnant Chinese women using metataxonomics and in a subset (n = 819), the relationship between vaginal microbiota composition, sialidase activity and leukocyte presence and pregnancy outcomes. Vaginal microbiota were most frequently dominated by Lactobacillus crispatus or L. iners, with the latter associated with vaginal leukocyte presence. Women with high sialidase activity were enriched for bacterial vaginosis-associated genera including Gardnerella, Atopobium and Prevotella. Vaginal microbiota composition, high sialidase activity and/or leukocyte presence was not associated with PTB risk suggesting underlying differences in the vaginal microbiota and/or host immune responses of Chinese women, possibly accounting for low PTB rates in this population.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yongjian Wu ◽  
Xiaomin Cheng ◽  
Guanmin Jiang ◽  
Huishu Tang ◽  
Siqi Ming ◽  
...  
Keyword(s):  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kristina L. Remple ◽  
Nyssa J. Silbiger ◽  
Zachary A. Quinlan ◽  
Michael D. Fox ◽  
Linda Wegley Kelly ◽  
...  

AbstractWork on marine biofilms has primarily focused on host-associated habitats for their roles in larval recruitment and disease dynamics; little is known about the factors regulating the composition of reef environmental biofilms. To contrast the roles of succession, benthic communities and nutrients in structuring marine biofilms, we surveyed bacteria communities in biofilms through a six-week succession in aquaria containing macroalgae, coral, or reef sand factorially crossed with three levels of continuous nutrient enrichment. Our findings demonstrate how biofilm successional trajectories diverge from temporal dynamics of the bacterioplankton and how biofilms are structured by the surrounding benthic organisms and nutrient enrichment. We identify a suite of biofilm-associated bacteria linked with the orthogonal influences of corals, algae and nutrients and distinct from the overlying water. Our results provide a comprehensive characterization of marine biofilm successional dynamics and contextualize the impact of widespread changes in reef community composition and nutrient pollution on biofilm community structure.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Paweł Łaniewski ◽  
Melissa M. Herbst-Kralovetz

AbstractBacterial vaginosis (BV) is an enigmatic polymicrobial condition characterized by a depletion of health-associated Lactobacillus and an overgrowth of anaerobes. Importantly, BV is linked to adverse gynecologic and obstetric outcomes: an increased risk of sexually transmitted infections, preterm birth, and cancer. We hypothesized that members of the cervicovaginal microbiota distinctly contribute to immunometabolic changes in the human cervix, leading to these sequelae. Our 3D epithelial cell model that recapitulates the human cervical epithelium was infected with clinical isolates of cervicovaginal bacteria, alone or as a polymicrobial community. We used Lactobacillus crispatus as a representative health-associated commensal and four common BV-associated species: Gardnerella vaginalis, Prevotella bivia, Atopobium vaginae, and Sneathia amnii. The immunometabolic profiles of these microenvironments were analyzed using multiplex immunoassays and untargeted global metabolomics. A. vaginae and S. amnii exhibited the highest proinflammatory potential through induction of cytokines, iNOS, and oxidative stress-associated compounds. G. vaginalis, P. bivia, and S. amnii distinctly altered physicochemical barrier-related proteins and metabolites (mucins, sialic acid, polyamines), whereas L. crispatus produced an antimicrobial compound, phenyllactic acid. Alterations to the immunometabolic landscape correlate with symptoms and hallmarks of BV and connected BV with adverse women’s health outcomes. Overall, this study demonstrated that 3D cervical epithelial cell colonized with cervicovaginal microbiota faithfully reproduce the immunometabolic microenvironment previously observed in clinical studies and can successfully be used as a robust tool to evaluate host responses to commensal and pathogenic bacteria in the female reproductive tract.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sonali Singh ◽  
Yasir Almuhanna ◽  
Mohammad Y. Alshahrani ◽  
Douglas W. Lowman ◽  
Peter J. Rice ◽  
...  

AbstractBacterial biofilms represent a challenge to the healthcare system because of their resilience against antimicrobials and immune attack. Biofilms consist of bacterial aggregates embedded in an extracellular polymeric substance (EPS) composed of polysaccharides, nucleic acids and proteins. We hypothesised that carbohydrates could contribute to immune recognition of Pseudomonas aeruginosa biofilms by engaging C-type lectins. Here we show binding of Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN, CD209), mannose receptor (MR, CD206) and Dectin-2 to P. aeruginosa biofilms. We also demonstrate that DC-SIGN, unlike MR and Dectin-2, recognises planktonic P. aeruginosa cultures and this interaction depends on the presence of the common polysaccharide antigen. Within biofilms DC-SIGN, Dectin-2 and MR ligands appear as discrete clusters with dispersed DC-SIGN ligands also found among bacterial aggregates. DC-SIGN, MR and Dectin-2 bind to carbohydrates purified from P. aeruginosa biofilms, particularly the high molecular weight fraction (HMW; >132,000 Da), with KDs in the nM range. These HMW carbohydrates contain 74.9–80.9% mannose, display α-mannan segments, interfere with the endocytic activity of cell-associated DC-SIGN and MR and inhibit Dectin-2-mediated cellular activation. In addition, biofilm carbohydrates reduce the association of the DC-SIGN ligand Lewisx, but not fucose, to human monocyte-derived dendritic cells (moDCs), and alter moDC morphology without affecting early cytokine production in response to lipopolysaccharide or P. aeruginosa cultures. This work identifies the presence of ligands for three important C-type lectins within P. aeruginosa biofilm structures and purified biofilm carbohydrates and highlights the potential for these receptors to impact immunity to P. aeruginosa infection.


Sign in / Sign up

Export Citation Format

Share Document