Epigenetics Communications
Latest Publications


TOTAL DOCUMENTS

6
(FIVE YEARS 6)

H-INDEX

0
(FIVE YEARS 0)

Published By Springer Science And Business Media LLC

2730-7034

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Dongjing Liu ◽  
Annie I. Arockiaraj ◽  
John R. Shaffer ◽  
Samuel M. Poloyac ◽  
Paula R. Sherwood ◽  
...  

Abstract Background Delayed cerebral ischemia (DCI) is a common secondary complication and an important cause of disability and mortality among patients who survive aneurysmal subarachnoid hemorrhage (aSAH). Knowledge on DCI pathogenesis, risk factors, and biomarkers are essential for early detection and improved prognosis. To investigate the role of DNA methylation in DCI risk, we conducted an epigenome-wide association study (EWAS) in 68 patients followed up to 1 year after the initial aneurysm rupture. Blood samples were collected within 48 h post hemorrhage and used for DNA methylation profiling at ~ 450k CpG sites. A separate cohort of 175 patients was sequenced for the top CpG sites from the discovery analysis for a replication of the EWAS findings. Results EWAS did not identify any epigenome-wide significant CpGs. The top signal, cg18031596, was annotated to ANGPT1, a gene with critical functions in angiogenesis after vascular injury. Post hoc power calculations indicated a well-powered discovery analysis for cg18031596. Analysis of the replication cohort showed that four out of the five CpG sites sequenced at the ANGPT1 locus passed a Bonferroni-adjusted significance threshold. In a pooled analysis of the entire sample, three out of five yielded a significant p-value, and the top association signal (p-value = 0.004) was seen for a CpG that was not originally measured in the discovery EWAS. However, four ANGPT1 CpG sites had an opposite effect direction in the replication analysis compared to the discovery EWAS, marking a failure of replication. We carefully examined this observed flip in directions and propose several possible explanations in addition to that it was a random chance that ANGPT1 ranked at the top in the discovery EWAS. Conclusions We failed to demonstrate a significant and consistent effect of ANGPT1 methylation in DCI risk in two cohorts. Though the replication attempt to weaken the overall support of this gene, given its relevant function and top rank of significance in the EWAS, our results call for future studies of larger aSAH cohorts to determine its relevance for the occurrence of DCI.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Jamaji C. Nwanaji-Enwerem ◽  
Chijioke Nze ◽  
Andres Cardenas

Abstract Background Despite the known role of mitosis in colorectal cancer, previous associations of long-term aspirin use with suppressed cancer-related epigenetic aging did not involve epigenetic mitotic clocks. We investigated these relationships using three epigenetic mitotic clocks developed for cancer risk prediction: EpiTOC, EpiTOC2, and MiAge. We utilized publicly available HumanMethylationEPIC BeadChip data from 112 healthy colon (proximal and distal) mucosal samples taken at baseline (T1) and at 10-years follow-up (T2) from a screening cohort of 28 Polish women (11 non-users and 17 long-term [≥ 2 years] aspirin users). Mitotic clock values were divided by chronological age at each timepoint to obtain intrinsic rates (IRs). We evaluated differences in residuals of the mitotic clock IRs taken from linear mixed effects models adjusted for BMI, polyp status, and DNA methylation batch. Findings EpiTOC, EpiTOC2, and MiAge were significantly correlated with chronological age (P < 0.05) with correlations ranging from 0.41 to 0.63. The EpiTOC, EpiTOC2, and MiAge clocks were strongly correlated with each other in proximal and distal samples (r > 0.79, P < 0.0001). We observed proximal within group median clock IR deceleration for EpiTOC (-0.0004 DNAm, P = 0.008), EpiTOC2 (− 16 cell divisions, P = 0.009), and MiAge (− 3 cell divisions, P = 0.002) for long-term aspirin users from T1 to T2 but not for non-users. In distal samples, only the long-term user MiAge IR was significantly deaccelerated (− 3 cell divisions, P = 0.009). Conclusions Our observed findings support previously reported longitudinal associations of aspirin use with deceleration of other epigenetic age measures in the proximal colon. Our mitotic clock results suggest that cell proliferation could play a role in some aspirin relationships with epigenetic aging. Furthermore, the findings provide added impetus for establishing gold standards for epigenetic aging and consensus guidelines for more comprehensive reporting in future epigenetic aging cancer studies.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Lacey W. Heinsberg ◽  
Daniel E. Weeks ◽  
Sheila A. Alexander ◽  
Ryan L. Minster ◽  
Paula R. Sherwood ◽  
...  

Abstract Background Following aneurysmal subarachnoid hemorrhage (aSAH), the brain is susceptible to ferroptosis, a type of iron-dependent cell death. Therapeutic intervention targeting the iron homeostasis pathway shows promise for mitigating ferroptosis and improving recovery in animal models, but little work has been conducted in humans. DNA methylation (DNAm) plays a key role in gene expression and brain function, plasticity, and injury recovery, making it a potentially useful biomarker of outcomes or therapeutic target for intervention. Therefore, in this longitudinal, observational study, we examined the relationships between trajectories of DNAm in candidate genes related to iron homeostasis and acute (cerebral vasospasm and delayed cerebral ischemia) and long-term (Glasgow Outcome Scale [GOS, unfavorable = 1–3] and death) patient outcomes after aSAH. Results Longitudinal, genome-wide DNAm data were generated from DNA extracted from post-aSAH cerebrospinal fluid (n = 260 participants). DNAm trajectories of 637 CpG sites in 36 candidate genes related to iron homeostasis were characterized over 13 days post-aSAH using group-based trajectory analysis, an unsupervised clustering method. Significant associations were identified between inferred DNAm trajectory groups at several CpG sites and acute and long-term outcomes. Among our results, cg25713625 in the STEAP3 metalloreductase gene (STEAP3) stood out. Specifically, in comparing the highest cg25713625 DNAm trajectory group with the lowest, we observed significant associations (i.e., based on p-values less than an empirical significance threshold) with unfavorable GOS at 3 and 12 months (OR = 11.7, p = 0.0006 and OR = 15.6, p = 0.0018, respectively) and death at 3 and 12 months (OR = 19.1, p = 0.0093 and OR = 12.8, p = 0.0041, respectively). These results were replicated in an independent sample (n = 100 participants) observing significant associations with GOS at 3 and 12 months (OR = 8.2, p = 0.001 and OR = 6.3, p = 0.0.0047, respectively) and death at 3 months (OR = 2.3, p = 0.008) and a suggestive association (i.e., p-value < 0.05 not meeting an empirical significance threshold) with death at 12 months (OR = 2.0, p = 0.0272). In both samples, an additive effect of the DNAm trajectory group was observed as the percentage of participants with unfavorable long-term outcomes increased substantially with higher DNAm trajectory groups. Conclusion Our results support a role for DNAm of cg25713625/STEAP3 in recovery following aSAH. Additional research is needed to further explore the role of DNAm of cg25713625/STEAP3 as a biomarker of unfavorable outcomes, or therapeutic target to improve outcomes, to translate these findings clinically.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Lacey W. Heinsberg ◽  
Dongjing Liu ◽  
John R. Shaffer ◽  
Daniel E. Weeks ◽  
Yvette P. Conley

Abstract Background Biological aging may occur at different rates than chronological aging due to genetic, social, and environmental factors. DNA methylation (DNAm) age is thought to be a reliable measure of accelerated biological aging which has been linked to an array of poor health outcomes. Given the importance of chronological age in recovery following aneurysmal subarachnoid hemorrhage (aSAH), a type of stroke, DNAm age may also be an important biomarker of outcomes, further improving predictive models. Cerebrospinal fluid (CSF) is a unique tissue representing the local central nervous system environment post-aSAH. However, the validity of CSF DNAm age is unknown, and it is unclear which epigenetic clock is ideal to compute CSF DNAm age, particularly given changes in cell type heterogeneity (CTH) during the acute recovery period. Further, the stability of DNAm age post-aSAH, specifically, has not been examined and may improve our understanding of patient recovery post-aSAH. Therefore, the purpose of this study was to characterize CSF DNAm age over 14 days post-aSAH using four epigenetic clocks. Results Genome-wide DNAm data were available for two tissues: (1) CSF for N = 273 participants with serial sampling over 14 days post-aSAH (N = 850 samples) and (2) blood for a subset of n = 72 participants at one time point post-aSAH. DNAm age was calculated using the Horvath, Hannum, Levine, and “Improved Precision” (Zhang) epigenetic clocks. “Age acceleration” was computed as the residuals of DNAm age regressed on chronological age both with and without correcting for CTH. Using scatterplots, Pearson correlations, and group-based trajectory analysis, we examined the relationships between CSF DNAm age and chronological age, the concordance between DNAm ages calculated from CSF versus blood, and the stability (i.e., trajectories) of CSF DNAm age acceleration over time during recovery from aSAH. We observed moderate to strong correlations between CSF DNAm age and chronological age (R = 0.66 [Levine] to R = 0.97 [Zhang]), moderate to strong correlations between DNAm age in CSF versus blood (R = 0.69 [Levine] to R = 0.98 [Zhang]), and stable CSF age acceleration trajectories over 14 days post-aSAH in the Horvath and Zhang clocks (unadjusted for CTH), as well as the Hannum clock (adjusted for CTH). Conclusions CSF DNAm age was generally stable post-aSAH. Although correlated, CSF DNAm age differs from blood DNAm age in the Horvath, Hannum, and Levine clocks, but not in the Zhang clock. Taken together, our results suggest that, of the clocks examined here, the Zhang clock is the most robust to CTH and is recommended for use in complex tissues such as CSF.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Lucia Altucci ◽  
Marianne G. Rots

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
William F. Beckman ◽  
Miguel Ángel Lermo Jiménez ◽  
Pernette J. Verschure

AbstractThe vast majority of eukaryotic transcription occurs in bursts during discrete periods of promoter activity, separated by periods of deep repression and inactivity. Elucidating the factors responsible for triggering transitions between these two states has been extremely challenging, partly due to the difficulties in measuring transcriptional bursting genome-wide, but also due to the vast array of candidate transcriptional and epigenetic factors and their complex and dynamic interactions. Additionally, this long-held view of transcriptional bursting as a two-state process has become increasingly challenged, and a resulting lack in consensus on terminology of the involved events has further complicated our understanding of the molecular mechanisms involved. Here, we review the impact of epigenetics on dynamic gene expression, with a focus on transcription bursting. We summarise current understanding of the epigenetic regulation of transcription bursting and propose new terminology for the interpretation of future results measuring transcription dynamics.


Sign in / Sign up

Export Citation Format

Share Document