Researches in Mathematics and Mechanics
Latest Publications


TOTAL DOCUMENTS

77
(FIVE YEARS 21)

H-INDEX

1
(FIVE YEARS 0)

Published By Odesa I.I. Mechnikov National University

2519-206x

2021 ◽  
Vol 25 (2(36)) ◽  
pp. 26-39
Author(s):  
P. Fugelo ◽  
S. Varbanets

Let $p$ be a prime number, $d\in\mathds{N}$, $\left(\frac{-d}{p}\right)=-1$, $m>2$, and let $E_m$ denotes the set of of residue classes modulo $p^m$ over the ring of Gaussian integers in imaginary quadratic field $\mathds{Q}(\sqrt{-d})$ with norms which are congruented with 1 modulo $p^m$. In present paper we establish the polynomial representations for real and imagimary parts of the powers of generating element $u+iv\sqrt{d}$ of the cyclic group $E_m$. These representations permit to deduce the ``rooted bounds'' for the exponential sum in Turan-Erd\"{o}s-Koksma inequality. The new family of the sequences of pseudo-random numbers that passes the serial test on pseudorandomness was being buit.


2021 ◽  
Vol 25 (2(36)) ◽  
pp. 7-25
Author(s):  
A. A. Fesenko ◽  
K. S. Bondarenko

The wave field of an elastic quarter space is constructed when one face is rigidly fixed and a dynamic normal compressive load acts on the other along a rectangular section at the initial moment of time. Integral Laplace and Fourier transforms are applied sequentially to the equations of motion and boundary conditions in contrast to traditional approaches when integral transforms are applied to solutions' representations through harmonic functions. This leads to a one-dimensional vector homogeneous boundary value problem with respect to unknown displacement's transformants. The problem was solved using matrix differential calculus. The original displacement field was found after applying inverse integral transforms. For the case of stationary vibrations a method of calculating integrals in the solution in the near loading zone was indicated. For the analysis of oscillations in a remote zone the asymptotic formulas were constructed. The amplitude of vertical vibrations was investigated depending on the shape of the load section, natural frequencies of vibrations and the material of the medium.


2021 ◽  
Vol 25 (2(36)) ◽  
pp. 83-94
Author(s):  
D. G. Kartashov ◽  
M. S. Tairova

The article proposes two algorithms for the numerical construction of the convex hull of a set in three-dimensional space using its support function. The first uses the hyperplane intersection method to find the pivot points of a set. The second one is based on the deformation function and allows you to find an arbitrary point of the convex hull of a set, which is convenient in many applications. The algorithms are compared, and asymptotic complexities are found. The application of the proposed apparatus to finding the destination set of dynamical systems is shown. The dynamic system will be based on differential inclusion.


2021 ◽  
Vol 25 (2(36)) ◽  
pp. 75-82
Author(s):  
V. V. Verbitskyi ◽  
A. G. Huk

Newton's method for calculating the eigenvalue and the corresponding eigenvector of a symmetric real matrix is considered. The nonlinear system of equations solved by Newton's method consists of an equation that determines the eigenvalue and eigenvector of the matrix and the normalization condition for the eigenvector. The method allows someone to simultaneously calculate the eigenvalue and the corresponding eigenvector. Initial approximations for the eigenvalue and the corresponding eigenvector can be found by the power method or by the reverse iteration with shift. A simple proof of the convergence of Newton's method in a neighborhood of a simple eigenvalue is proposed. It is shown that the method has a quadratic convergence rate. In terms of computational costs per iteration, Newton's method is comparable to the reverse iteration method with the Rayleigh ratio. Unlike reverse iteration, Newton's method allows to compute the eigenpair with better accuracy.


2021 ◽  
Vol 25 (2(36)) ◽  
pp. 40-57
Author(s):  
Y. Z. Piskozub ◽  
H. T. Sulym

An incremental approach to solving the antiplane problem for bimaterial media with a thin, physically nonlinear inclusion placed on the materials interface is discussed. Using the jump functions method and the coupling problem of boundary values of the analytical functions method we reduce the problem to the system of singular integral equations (SSIE) on jump functions with variable coefficients allowing us to describe any quasi-static loads (monotonous or not) and their influence on the stress-strain state in the bulk. To solve the SSIE problem, an iterative analytical-numerical method is offered for various non-linear deformation models. Numerical calculations are carried out for different values of non-linearity characteristic parameters for the inclusion material. Their parameters are analyzed for a deformed body under a load of a balanced concentrated force system.


2021 ◽  
Vol 25 (2(36)) ◽  
pp. 95-102
Author(s):  
S. A. Shchogolev ◽  
V. V. Karapetrov

In the mathematical description of various phenomena and processes that arise in mathematical physics, electrical engineering, economics, one has to deal with matrix differential equations. Therefore, these equations are relevant both for mathematicians and for specialists in other areas of natural science. Many studies are devoted to them, in which the solvability of matrix equations in various function spaces, boundary value problems for matrix differential equations, and other problems were investigated. In this article, a quasilinear matrix equation is considered, the coefficients of which can be represented in the form of absolutely and uniformly converging Fourier series with coefficients and frequency slowly varying in a certain sense. The problem is posed of obtaining sufficient conditions for the existence of particular solutions of a similar structure for the equation under consideration. For this purpose, the corresponding linear equation is considered first. It is written down in component-wise form, and, based on the assumptions made, the existence of the only particular solution of the specified structure is proved. Then, using the method of successive approximations and the principle of contracting mappings, the existence of a unique particular solution of the indicated structure for the original quasilinear equation are proved.


2021 ◽  
Vol 25 (2(36)) ◽  
pp. 58-74
Author(s):  
R. Skuratovskii ◽  
V. Strarodub

This is a paper about triangle cubics and conics in classical geometry with elements of projective geometry. In recent years, N.J. Wildberger has actively dealt with this topic using an algebraic perspective. Triangle conics were also studied in detail by H.M. Cundy and C.F. Parry recently. The main task of the article was to develop an algorithm for creating curves, which pass through triangle centers. During the research, it was noticed that some different triangle centers in distinct triangles coincide. The simplest example: an incenter in a base triangle is an orthocenter in an excentral triangle. This was the key for creating an algorithm. Indeed, we can match points belonging to one curve (base curve) with other points of another triangle. Therefore, we get a new intersting geometrical object. During the research were derived number of new triangle conics and cubics, were considered their properties in Euclidian space. In addition, was discussed corollaries of the obtained theorems in projective geometry, what proves that all of the descovered results could be transfered to the projeticve plane.


Sign in / Sign up

Export Citation Format

Share Document