Advances in Continuous and Discrete Models
Latest Publications


TOTAL DOCUMENTS

4
(FIVE YEARS 4)

H-INDEX

0
(FIVE YEARS 0)

Published By Springer Science And Business Media LLC

2731-4235

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Cosme Duque ◽  
Hugo Leiva ◽  
Abdessamad Tridane

AbstractThis paper aims to study the relative equivalence of the solutions of the following dynamic equations $y^{\Delta }(t)=A(t)y(t)$ y Δ ( t ) = A ( t ) y ( t ) and $x^{\Delta }(t)=A(t)x(t)+f(t,x(t))$ x Δ ( t ) = A ( t ) x ( t ) + f ( t , x ( t ) ) in the sense that if $y(t)$ y ( t ) is a given solution of the unperturbed system, we provide sufficient conditions to prove that there exists a family of solutions $x(t)$ x ( t ) for the perturbed system such that $\Vert y(t)-x(t) \Vert =o( \Vert y(t) \Vert )$ ∥ y ( t ) − x ( t ) ∥ = o ( ∥ y ( t ) ∥ ) , as $t\rightarrow \infty $ t → ∞ , and conversely, given a solution $x(t)$ x ( t ) of the perturbed system, we give sufficient conditions for the existence of a family of solutions $y(t)$ y ( t ) for the unperturbed system, and such that $\Vert y(t)-x(t) \Vert =o( \Vert x(t) \Vert )$ ∥ y ( t ) − x ( t ) ∥ = o ( ∥ x ( t ) ∥ ) , as $t\rightarrow \infty $ t → ∞ ; and in doing so, we have to extend Rodrigues inequality, the Lyapunov exponents, and the polynomial exponential trichotomy on time scales.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Jun Moon

AbstractWe consider the optimal control problem for stochastic differential equations (SDEs) with random coefficients under the recursive-type objective functional captured by the backward SDE (BSDE). Due to the random coefficients, the associated Hamilton–Jacobi–Bellman (HJB) equation is a class of second-order stochastic PDEs (SPDEs) driven by Brownian motion, which we call the stochastic HJB (SHJB) equation. In addition, as we adopt the recursive-type objective functional, the drift term of the SHJB equation depends on the second component of its solution. These two generalizations cause several technical intricacies, which do not appear in the existing literature. We prove the dynamic programming principle (DPP) for the value function, for which unlike the existing literature we have to use the backward semigroup associated with the recursive-type objective functional. By the DPP, we are able to show the continuity of the value function. Using the Itô–Kunita’s formula, we prove the verification theorem, which constitutes a sufficient condition for optimality and characterizes the value function, provided that the smooth (classical) solution of the SHJB equation exists. In general, the smooth solution of the SHJB equation may not exist. Hence, we study the existence and uniqueness of the solution to the SHJB equation under two different weak solution concepts. First, we show, under appropriate assumptions, the existence and uniqueness of the weak solution via the Sobolev space technique, which requires converting the SHJB equation to a class of backward stochastic evolution equations. The second result is obtained under the notion of viscosity solutions, which is an extension of the classical one to the case for SPDEs. Using the DPP and the estimates of BSDEs, we prove that the value function is the viscosity solution to the SHJB equation. For applications, we consider the linear-quadratic problem, the utility maximization problem, and the European option pricing problem. Specifically, different from the existing literature, each problem is formulated by the generalized recursive-type objective functional and is subject to random coefficients. By applying the theoretical results of this paper, we obtain the explicit optimal solution for each problem in terms of the solution of the corresponding SHJB equation.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Feyza Tanberk Okumuş ◽  
Mahmut Akyiğit ◽  
Khursheed J. Ansari ◽  
Fuat Usta

Abstractthat fix the function $e^{-2x} $ e − 2 x for $x\geq 0 $ x ≥ 0 . Then, we provide the approximation properties of these newly defined operators for different types of function spaces. In addition, we focus on the rate of convergence utilizing appropriate moduli of continuity. Then, we provide the Voronovskaya-type theorem for these new operators. Finally, in order to validate our theoretical results, we provide some numerical experiments that are produced by a MATLAB complier.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Ibrahim Mohammed Sulaiman ◽  
Maulana Malik ◽  
Aliyu Muhammed Awwal ◽  
Poom Kumam ◽  
Mustafa Mamat ◽  
...  

AbstractThe three-term conjugate gradient (CG) algorithms are among the efficient variants of CG algorithms for solving optimization models. This is due to their simplicity and low memory requirements. On the other hand, the regression model is one of the statistical relationship models whose solution is obtained using one of the least square methods including the CG-like method. In this paper, we present a modification of a three-term conjugate gradient method for unconstrained optimization models and further establish the global convergence under inexact line search. The proposed method was extended to formulate a regression model for the novel coronavirus (COVID-19). The study considers the globally infected cases from January to October 2020 in parameterizing the model. Preliminary results have shown that the proposed method is promising and produces efficient regression model for COVID-19 pandemic. Also, the method was extended to solve a motion control problem involving a two-joint planar robot.


Sign in / Sign up

Export Citation Format

Share Document