The effect of non-condensable gas on the subcooled water critical flow in a safety valve is investigated experimentally at various subcoolings with 3 different disk lifts. To evaluate its effect on the critical pressure ratio and critical flow rate, three parameters are considered: the ratios of outlet pressure to inlet pressure, the subcooling to inlet temperature, and the gas volumetric flow to water volumetric flow are 0.15–0.23, 0.07–0.12, and 0–0.8, respectively. It turns out that the critical pressure ratio is mainly dependent on the subcooling, and its dependency on the gas fraction and the pressure drop is relatively small. When the ratio of nitrogen gas volumetric flow to water volumetric flow becomes lower than 20%, the subcooled water critical flow rate is decreased about 10% compare to the water flow rate of without non-condensable gas. However, it maintains a constant value after the ratio of gas volumetric flow to water volumetric flow becomes higher than 20%. The subcooled water critical flow correlation, which considers subcooling, disc lift, backpressure, and non-condensable gas, shows good agreement with the total present experimental data with the root mean square error 8.17%.