visual stimulation
Recently Published Documents


TOTAL DOCUMENTS

1554
(FIVE YEARS 412)

H-INDEX

81
(FIVE YEARS 9)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262216
Author(s):  
Pierre Fauvé ◽  
Louise Tyvaert ◽  
Cyril Husson ◽  
Emmanuelle Hologne ◽  
Xiaoqing Gao ◽  
...  

Background Psychogenic non epileptic seizures (PNES) are a frequent, disabling and costly disorder for which there is no consensual caring. They are considered as a dissociative disorder and they share many common characteristics with post-traumatic stress disorder (PTSD). Nevertheless, their pathophysiology is still unclear. In this study, we plan to obtain new data comparing functional brain activity of participants suffering from PNES, from PTSD and healthy controls via functional brain MRI during resting state and under emotional visual stimulation. The protocol presented hereunder describes an observational study with no direct treatment implication. Nevertheless, it could lead to a better understanding of PNES and to identifying targets for specialised cares of post-traumatic or dissociative disorders, like repetitive transcranial magnetic stimulation. Methods & analysis This is a prospective, single-centre, interventional, non-randomized, open, controlled and exploratory clinical study. It will involve 75 adult French, right-handed women in 3 groups, either suffering from PNES or PTSD, or healthy controls. An informed consent will be signed by each participant. All of them will be given psychiatric tests to assess dissociation and alexithymia, psychopathological profile and history, and emotional recognition. Each participant will undergo a functional brain MRI. We will record anatomical images and five functional imaging sequences including emotional periodic oscillatory stimulation, standard emotional stimulation, Go / No Go task under emotional stimulation, and resting state. Analysis will include a descriptive analysis of all participants and the treatment for functional magnetic resonance imaging images of each sequence. Registration, ethics & dissemination This study was approved the regional Protection of Persons Committee under the reference 16.10.01 and by the French National Medical Security Agency under the reference 2016-A01295-46. The protocol and results will be published in peer-reviewed academic medical journals and disseminated to research teams, databases, specialised media and concerned patients’ organisations.


2022 ◽  
Vol 15 ◽  
Author(s):  
Chengcheng Han ◽  
Guanghua Xu ◽  
Xiaowei Zheng ◽  
Peiyuan Tian ◽  
Kai Zhang ◽  
...  

The refresh rate is one of the important parameters of visual presentation devices, and assessing the effect of the refresh rate of a device on motion perception has always been an important direction in the field of visual research. This study examined the effect of the refresh rate of a device on the motion perception response at different stimulation frequencies and provided an objective visual electrophysiological assessment method for the correct selection of display parameters in a visual perception experiment. In this study, a flicker-free steady-state motion visual stimulation with continuous scanning frequency and different forms (sinusoidal or triangular) was presented on a low-latency LCD monitor at different refresh rates. Seventeen participants were asked to observe the visual stimulation without head movement or eye movement, and the effect of the refresh rate was assessed by analyzing the changes in the intensity of their visual evoked potentials. The results demonstrated that an increased refresh rate significantly improved the intensity of motion visual evoked potentials at stimulation frequency ranges of 7–28 Hz, and there was a significant interaction between the refresh rate and motion frequency. Furthermore, the increased refresh rate also had the potential to enhance the ability to perceive similar motion. Therefore, we recommended using a refresh rate of at least 120 Hz in motion visual perception experiments to ensure a better stimulation effect. If the motion frequency or velocity is high, a refresh rate of≥240 Hz is also recommended.


2022 ◽  
Vol 35 (1) ◽  
Author(s):  
Fu Yuan ◽  
Diansheng Chen ◽  
Chenghang Pan ◽  
Jun Du ◽  
Xiaodong Wei ◽  
...  

AbstractTo accommodate the gait and balance disorder of the elderly with age progression and the occurrence of various senile diseases, this paper proposes a novel gait balance training robot (G-Balance) based on a six degree-of-freedom parallel platform. Using the platform movement and IMU wearable sensors, two training modes, i.e., active and passive, are developed to achieve vestibular stimulation. Virtual reality technology is applied to achieve visual stimulation. In the active training mode, the elderly actively exercises to control the posture change of the platform and the switching of the virtual scene. In the passive training mode, the platform movement is combined with the virtual scene to simulate bumpy environments, such as earthquakes, to enhance the human anti-interference ability. To achieve a smooth switching of the scene, continuous speed and acceleration of the platform motion are required in some scenarios, in which a trajectory planning algorithm is applied. This paper describes the application of the trajectory planning algorithm in the balance training mode and the optimization of jerk (differential of acceleration) based on cubic spline planning, which can reduce impact on the joint and enhance stability.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 318
Author(s):  
Arrigo Palumbo ◽  
Nicola Ielpo ◽  
Barbara Calabrese

Brain-computer interfaces (BCI) can detect specific EEG patterns and translate them into control signals for external devices by providing people suffering from severe motor disabilities with an alternative/additional channel to communicate and interact with the outer world. Many EEG-based BCIs rely on the P300 event-related potentials, mainly because they require training times for the user relatively short and provide higher selection speed. This paper proposes a P300-based portable embedded BCI system realized through an embedded hardware platform based on FPGA (field-programmable gate array), ensuring flexibility, reliability, and high-performance features. The system acquires EEG data during user visual stimulation and processes them in a real-time way to correctly detect and recognize the EEG features. The BCI system is designed to allow to user to perform communication and domotic controls.


2021 ◽  
Vol 12 ◽  
Author(s):  
Steven M. Thurman ◽  
Russell A. Cohen Hoffing ◽  
Anna Madison ◽  
Anthony J. Ries ◽  
Stephen M. Gordon ◽  
...  

Pupil size is influenced by cognitive and non-cognitive factors. One of the strongest modulators of pupil size is scene luminance, which complicates studies of cognitive pupillometry in environments with complex patterns of visual stimulation. To help understand how dynamic visual scene statistics influence pupil size during an active visual search task in a visually rich 3D virtual environment (VE), we analyzed the correlation between pupil size and intensity changes of image pixels in the red, green, and blue (RGB) channels within a large window (~14 degrees) surrounding the gaze position over time. Overall, blue and green channels had a stronger influence on pupil size than the red channel. The correlation maps were not consistent with the hypothesis of a foveal bias for luminance, instead revealing a significant contextual effect, whereby pixels above the gaze point in the green/blue channels had a disproportionate impact on pupil size. We hypothesized this differential sensitivity of pupil responsiveness to blue light from above as a “blue sky effect,” and confirmed this finding with a follow-on experiment with a controlled laboratory task. Pupillary constrictions were significantly stronger when blue was presented above fixation (paired with luminance-matched gray on bottom) compared to below fixation. This effect was specific for the blue color channel and this stimulus orientation. These results highlight the differential sensitivity of pupillary responses to scene statistics in studies or applications that involve complex visual environments and suggest blue light as a predominant factor influencing pupil size.


Author(s):  
Ji-Eun Jeong ◽  
Sin-Ae Park

This study was designed to assess the physiological and psychological benefits of visually looking at foliage plants in adults. This study involved 30 adults in their 20s (11 males, 19 females), and using a crossover design, participants looked at four different types of visual stimuli, namely, real plants, artificial plants, a photograph of plants, and no plants for 5 min. Brain waves were measured while viewing each type of plant, and a subjective evaluation of emotions was performed after each visual stimulus. Semantic differential methods (SDM) and Profile of Mood States (POMS) were used for the subjective evaluation. During the real plant visual stimulation, relative theta (RT) power spectrum was increased in the bilateral occipital lobes, while relative high beta (RHB) power spectrum was reduced in the left occipital lobe, indicating a reduction in stress, anxiety, and tension. The subjective survey results revealed that when looking at real plants, the participants exhibited significantly higher “comfort,” “natural,” and “relaxed” scores as well as an increase in positive mood conditions. In conclusion, among the four types of plants, visual stimulation with real plants induces physiological relaxation in adults and has a positive psychological effect.


Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1349
Author(s):  
Linjia Wu ◽  
Qidi Dong ◽  
Shixian Luo ◽  
Wenyuan Jiang ◽  
Ming Hao ◽  
...  

City green space can promote people’s health and aesthetic satisfaction; however, most extant research focuses on suburban forests and urban parks. Urban landscape forests have important ecological and aesthetic value for urban environments. This study conducted a visual stimulation to examine the impact of four common spatial element combinations in urban landscape forests on teenagers’ recovery potential and preference. The results indicate that urban landscape forests had positive physiological and psychological effects on adolescents, including decreased blood pressure, improved heart rate, reduced anxiety, and improved recovery ability. Diastolic blood pressure relief performance was better among males than females. In addition, a stepwise linear regression analysis was performed to explore the quantitative relationship between spatial elements and recovery and preference values. The results demonstrate that water elements were a significant predictor in the quantitative relationship between spatial elements in landscape forests and restoration and preference values. Terrain, flower, and shrub elements did not have a significant effect on overall restoration and preference values. This study highlights the intervention value of urban landscape forests in promoting the health and well-being of adolescents, with implications for future planning and design of urban landscape forests.


Author(s):  
Ernest Bielinis ◽  
Emilia Janeczko ◽  
Norimasa Takayama ◽  
Anna Zawadzka ◽  
Alicja Słupska ◽  
...  

Forest recreation can be successfully used for the psychological relaxation of respondents and can be used as a remedy for common problems with stress. The special form of forest recreation intended for restoration is forest bathing. These activities might be distracted by some factors, such as viewing buildings in the forest or using a computer in nature, which interrupt psychological relaxation. One factor that might interrupt psychological relaxation is the occurrence of an open dump in the forest during an outdoor experience. To test the hypothesis that an open dump might decrease psychological relaxation, a case study was planned that used a randomized, controlled crossover design. For this purpose, two groups of healthy young adults viewed a control forest or a forest with an open dump in reverse order and filled in psychological questionnaires after each stimulus. A pretest was used. Participants wore oblique eye patches to stop their visual stimulation before the experimental stimulation, and the physical environment was monitored. The results were analyzed using the two-way repeated measures ANOVA. The measured negative psychological indicators significantly increased after viewing the forest with waste, and the five indicators of the Profile of Mood States increased: Tension-Anxiety, Depression-Dejection, Anger-Hostility, Fatigue, and Confusion. In addition, the negative aspect of the Positive and Negative Affect Schedule increased in comparison to the control and pretest. The measured positive indicators significantly decreased after viewing the forest with waste, the positive aspect of the Positive and Negative Affect Schedule decreased, and the Restorative Outcome Scale and Subjective Vitality scores decreased (in comparison to the control and pretest). The occurrence of an open dump in the forest might interrupt a normal restorative experience in the forest by reducing psychological relaxation. Nevertheless, the mechanism of these relevancies is not known, and thus, it will be further investigated. In addition, in a future study, the size of the impact of these open dumps on normal everyday experiences should be investigated. It is proposed that different mechanisms might be responsible for these reactions; however, the aim of this manuscript is to only measure this reaction. The identified psychological reasons for these mechanisms can be assessed in further studies.


2021 ◽  
Vol 11 (23) ◽  
pp. 11544
Author(s):  
Alexander K. Kuc ◽  
Semen A. Kurkin ◽  
Vladimir A. Maksimenko ◽  
Alexander N. Pisarchik ◽  
Alexander E. Hramov

We tested whether changes in prestimulus neural activity predict behavioral performance (decision time and errors) during a prolonged visual task. The task was to classify ambiguous stimuli—Necker cubes; manipulating the degree of ambiguity from low ambiguity (LA) to high ambiguity (HA) changed the task difficulty. First, we assumed that the observer’s state changes over time, which leads to a change in the prestimulus brain activity. Second, we supposed that the prestimulus state produces a different effect on behavioral performance depending on the task demands. Monitoring behavioral responses, we revealed that the observer’s decision time decreased for both LA and HA stimuli during the task performance. The number of perceptual errors lowered for HA, but not for LA stimuli. EEG analysis revealed an increase in the prestimulus 9–11 Hz EEG power with task time. Finally, we found associations between the behavioral and neural estimates. The prestimulus EEG power negatively correlated with the decision time for LA stimuli and the erroneous responses rate for HA stimuli. The obtained results confirm that monitoring prestimulus EEG power enables predicting perceptual performance on the behavioral level. The observed different time-on-task effects on the LA and HA stimuli processing may shed light on the features of ambiguous perception.


Sign in / Sign up

Export Citation Format

Share Document