unscented kalman filter
Recently Published Documents


TOTAL DOCUMENTS

1889
(FIVE YEARS 635)

H-INDEX

50
(FIVE YEARS 14)

2022 ◽  
Author(s):  
Philip P Graybill ◽  
Bruce J. Gluckman ◽  
Mehdi Kiani

The unscented Kalman filter (UKF) is finding increased application in biological fields. While realizing a complex UKF system in a low-power embedded platform offers many potential benefits including wearability, it also poses significant design challenges. Here we present a method for optimizing a UKF system for realization in an embedded platform. The method seeks to minimize both computation time and error in UKF state reconstruction and forecasting. As a case study, we applied the method to a model for the rat sleep-wake regulatory system in which 432 variants of the UKF over six different variables are considered. The optimization method is divided into three stages that assess computation time, state forecast error, and state reconstruction error. We apply a cost function to variants that pass all three stages to identify a variant that computes 27 times faster than the reference variant and maintains required levels of state estimation and forecasting accuracy. We draw the following insights: 1) process noise provides leeway for simplifying the model and its integration in ways that speed computation time while maintaining state forecasting accuracy, 2) the assimilation of observed data during the UKF correction step provides leeway for simplifying the UKF structure in ways that speed computation time while maintaining state reconstruction accuracy, and 3) the optimization process can be accelerated by decoupling variables that directly impact the underlying model from variables that impact the UKF structure.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Li Yang ◽  
Haote Ruan ◽  
Yunhan Zhang

In recent years, many low-orbit satellites have been widely used in the field of scientific research and national defense in China. In order to meet the demand of high-precision satellite orbit in China’s space, surveying and mapping, and other related fields, navigation satellites are of great significance. The UKF (unscented Kalman filter) method is applied to space targets’ spaceborne GPS autonomous orbit determination. In this paper, the UKF algorithm based on UT transformation is mainly introduced. In view of the situation that the system noise variance matrix is unknown or the dynamic model is not accurate, an adaptive UKF filtering algorithm is proposed. Simulation experiments are carried out with CHAMP satellite GPS data, and the results show that the filtering accuracy and stability are improved, which proves the algorithm’s effectiveness. The experimental results show that the Helmert variance component estimation considering the dynamics model can solve the problem of reasonable weight determination of BDS/GPS observations and effectively weaken the influence of coarse error and improve the accuracy of orbit determination. The accuracy of autonomous orbit determination by spaceborne BDS/GPS is 1.19 m and 2.35 mm/s, respectively.


2022 ◽  
Author(s):  
Xinghua Liu ◽  
Jianwei Guan ◽  
Rui Jiang ◽  
Xiang Gao ◽  
Badong Chen ◽  
...  

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Junjian Hou ◽  
Haizhu Lei ◽  
Zhijun Fu ◽  
Peixin Yuan ◽  
Yuming Yin ◽  
...  

Roll responses of the semitrailer and the tractor provide higher lead time and characterise the roll instability of the commercial vehicles subjected to directional manoeuvres at highway speeds. This paper proposes a novel rollover index based on the synthesized roll angles of the tractor and trailer. Owing to the poor measurability, the unscented Kalman filter (UKF) algorithm is used to estimate the roll angle of the track and trailer, respectively. Meanwhile, different weight coefficients are considered in the rollover index to eliminate the influence of mutual coupling between the tractor and the trailer and improve the accuracy of the warning. For the practical implementation of the algorithm, a two-stage rollover warning method triggered by the video and audio is finally proposed to reduce the possibilities of false warnings. Co-simulation is presented to prove the validity of the proposed rollover warning approach.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 364
Author(s):  
Yanding Qin ◽  
Haoqi Zhang ◽  
Xiangyu Wang ◽  
Jianda Han

The hysteretic nonlinearity of pneumatic artificial muscle (PAM) is the main factor that degrades its tracking accuracy. This paper proposes an efficient hysteresis compensation method based on the active modeling control (AMC). Firstly, the Bouc–Wen model is adopted as the reference model to describe the hysteresis of the PAM. Secondly, the modeling errors are introduced into the reference model, and the unscented Kalman filter is used to estimate the state of the system and the modeling errors. Finally, a hysteresis compensation strategy is designed based on AMC. The compensation performances of the nominal controller with without AMC were experimentally tested on a PAM. The experimental results show that the proposed controller is more robust when tracking different types of trajectories. In the transient, both the overshoot and oscillation can be successfully attenuated, and fast convergence is achieved. In the steady-state, the proposed controller is more robust against external disturbances and measurement noise. The proposed controller is effective and robust in hysteresis compensation, thus improving the tracking performance of the PAM.


Sign in / Sign up

Export Citation Format

Share Document