suppressed conductivity detection
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 8)

H-INDEX

19
(FIVE YEARS 1)

AAPS Open ◽  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Deanna J. Nelson ◽  
G. Dean Marbury

AbstractIon chromatography (IC) has evolved into one of the most widely used separation techniques of analytical chemistry. Consequently, the number of users of this method is continuously growing. Analysts often assume that widely used guidelines for HPLC method validation in regulated environments routinely apply to IC. This manuscript provides an analysis of the potential shortcomings of traditional approaches to development and validation of IC methods using suppressed conductivity detection and a risk-based alternative approach to these activities. The goal of the alternative approach is a reduction in the risk of erroneous determinations of analytes when IC methods using suppressed conductivity detection are employed.


Separations ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 209
Author(s):  
Ngoc Phuoc Dinh ◽  
Adel Shamshir ◽  
Gjani Hulaj ◽  
Tobias Jonsson

Inspired by the United States Pharmacopoeia (USP) “monograph modernization” initiative, we developed and validated an assay for foscarnet sodium injection solution (“foscavir”), following quality by design (QbD) principles, incorporating design of experiments (DoE) and multivariate data analysis to establish the design space and robust setpoint of the method. The resulting analytical procedure was based on ion chromatography (IC) with suppressed conductivity detection, employing an isocratic carbonate–bicarbonate eluent system. The assay was successfully validated at the robust setpoint conditions, according to the guidelines established by the International Council for Harmonization (ICH). The linear range stretched at least from 5 to 100 mg/L with high repeatability (relative standard deviation, RSD ≤ 0.3%) both at the target concentration (60 mg/L) and at 50% and 150% from this level. Special attention was given to establish a rugged assay that would be easily transferable between laboratories, and the recorded recoveries of 98.2–100.5% for both the formulated drug product and the drug substance during intermediate precision evaluation at different analysis situations indicated that this mission was accomplished. A multivariate assessment of intermediate precision data acquired using an experimental design scheme revealed that the assay was not adversely affected by any of the situation variables, including the use of different liquid chromatography instrument types, regardless of if they were constructed from inert materials or stainless steel that had been passivated, even though such problems have been reported in several previous methods for analysis of foscarnet.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kishore V. Merusomayajula ◽  
T. Siva Rao ◽  
K. Rama Srinivas ◽  
Ch. V. Sathyendranath

Abstract Background The current study focuses on the development and validation of an analytical method for quantifying cyanoacetic acid (CAA) in teriflunomide drug substance using a high-performance ion chromatography (IC) with cation suppressed conductivity detection (TFM). Water was used as the diluent for preparing the sample solution, which was injected into a standard chromatographic device with 250 mm, 4.0 mm ID, and 5.0 μm particle size Metrosep A Supp 5 Ion exchange column and a suppressed conductivity detector. At a flow rate of 0.6 mL min−1 and a temperature of 40 °C, the mobile phase was delivered in an isocratic mode. Results CAA and TFM had retention times of 12.78 and 15.82 min, respectively. CAA has a limit of detection (LOD) of 33 μg/g and a limit of quantification (LOQ) of 101 μg/g, respectively. For LOD and LOQ accuracy, the percentage RSD of CAA is 1.7 and 1.2, respectively. The average CAA recovery percentage was found to be between 98.6 and 100.1%. With a value of 0.9998, the calibration curve yielded an excellent linear correlation coefficient for CAA. According to the ICH guidelines, all verification parameters are within the range, indicating that the system is stable. Conclusion The elution time and run time in the currently developed ion chromatography analytical method have been reduced, demonstrating that the method is cost-effective and generally accepted, as well as simple and functional, and can be used in routine quality control tests in the industry.


2021 ◽  
Vol 15 (3) ◽  
pp. 319-323
Author(s):  
Paulina Pecyna-Utylska ◽  
◽  
Tomasz Konieczny ◽  
Rajmund Michalski ◽  
◽  
...  

Validated isocratic ion chromatography method with suppressed conductivity detection has been developed for the simultaneously determination of common inorganic anions (F-, Cl-, NO3-, PO43-, SO42-), as well as formate and acetate. Liquid samples originate from absorption of gaseous by-products from coal combustion with and without the addition of medium-density fireboards. The influence of sample pH changes on carboxylic acids determination has been tested.


2020 ◽  
Vol 16 (2) ◽  
pp. 20
Author(s):  
Muhammad Amin ◽  
Budhi Oktavia

<p>ABSTRAK.Sebuah studi telah dilakukan untuk menentukan kadar mineral mikro kation dan anion dalam sampel air panas bumi dengan teknik kromatografi ion. Semua sampel yang dikumpulkan, berasal dari beberapa titik sumber air panas bumi di Jailolo, Provinsi Maluku Utara. Kromatografi ion telah dikenal sebagai metode analitik yang sangat populer digunakan untuk menentukan kadar anorganik kation dan anion dalam berbagai jenis sampel air. Metode deteksi kromatografi ion menggunakan sistem konduktivitas yang tidak tertekan dan tertekan dapat diterapkan pada masing-masing penentuan kadar mineral kation dan anion. Dalam penelitian ini, kromatografi ion dengan sistem konduktivitas tidak ditekan digunakan untuk penentuan 7 jenis kation seperti Na+, NH4+, K+, Mg2+, Ca2+, Ba2+, dan Sr2+, sedangkan kromatografi ion dengan sistem konduktivitas ditekan digunakan untuk penentuan 7 jenis anion seperti F-, Cl-, NO2-, Br-, NO3-, SO42-, dan PO43-. Pada kadar 2,5 mmol/L HNO3 dan kombinasi 6 mmol/L Na2CO3+0,5 mmol/L NaHCO3 digunakan sebagai fase gerak untuk masing-masing penentuan kadar mineral mikro kation dan anion.</p><p>ABSTRACT. Application of Ion Chromatography Technique to the Determination of Micro Mineral Concentration of Cations (Na+, NH4+, K+, Mg2+, Ca2+, Ba2+, and Sr2+) and Anions (F-, Cl-, Br-, NO2-, NO3-, SO42–, and PO43-) in Geothermal Water Samples for Balneotherapy.A study was conducted to determine the micro mineral concentration of cations and anions in geothermal water samples by ion chromatography (IC) techniques. All the samples were collected at several sampling points in Jailolo district, North Maluku Province. IC has been known to be a very popular analytical method used to determine the concentration of cations and anions in various types of water samples. With non-suppressed and suppressed conductivity detection, IC systems can be applied for the determination of cations and anions, respectively. In this study, IC with a non-suppressed system was used for the determination of seven cations such as Na+, NH4+, K+ Mg2+, Ca2+, Ba2+, and Sr2+. Meanwhile,IC witha suppressed system was used for the determination of 7 anions such as F-, Cl-, NO2-, Br-, NO3-, SO42-, and PO43-. A solution of 2.5 mmol/L HNO3 and a combination of 6 mmol/L Na2CO3 and 0.5 mmol/L NaHCO3 were used as the eluent for the determination of mineral cations and anions, respectively.</p>


2020 ◽  
Vol 16 (2) ◽  
pp. 171
Author(s):  
Muhammad Amin ◽  
Budhi Oktavia

<p>Sebuah studi telah dilakukan untuk menentukan kadar mineral mikro kation dan anion dalam sampel air panas bumi dengan teknik kromatografi ion. Semua sampel yang dikumpulkan, berasal dari beberapa titik sumber air panas bumi di Jailolo, Provinsi Maluku Utara. Kromatografi ion telah dikenal sebagai metode analitik yang sangat populer digunakan untuk menentukan kadar anorganik kation dan anion dalam berbagai jenis sampel air. Metode deteksi kromatografi ion menggunakan sistem konduktivitas yang tidak tertekan dan tertekan dapat diterapkan pada masing-masing penentuan kadar mineral kation dan anion. Dalam penelitian ini, kromatografi ion dengan sistem konduktivitas tidak ditekan digunakan untuk penentuan 7 jenis kation seperti Na+, NH4+, K+, Mg2+, Ca2+, Ba2+, dan Sr2+, sedangkan kromatografi ion dengan sistem konduktivitas ditekan digunakan untuk penentuan 7 jenis anion seperti F-, Cl-, NO2-, Br-, NO3-, SO42-, dan PO43-. Pada kadar 2,5 mmol/L HNO3 dan kombinasi 6 mmol/L Na2CO3+0,5 mmol/L NaHCO3 digunakan sebagai fase gerak untuk masing-masing penentuan kadar mineral mikro kation dan anion.</p><p><strong>Application of Ion Chromatography Technique to the Determination of Micro Mineral Concentration of Cations (Na+, NH4+, K+, Mg2+, Ca2+, Ba2+, and Sr2+) and Anions (F-, Cl-, Br-, NO2-, NO3-, SO42–, and PO43-) in Geothermal Water Samples for Balneotherapy</strong>.A study was conducted to determine the micro mineral concentration of cations and anions in geothermal water samples by ion chromatography (IC) techniques. All the samples were collected at several sampling points in Jailolo district, North Maluku Province. IC has been known to be a very popular analytical method used to determine the concentration of cations and anions in various types of water samples. With non-suppressed and suppressed conductivity detection, IC systems can be applied for the determination of cations and anions, respectively. In this study, IC with a non-suppressed system was used for the determination of seven cations such as Na+, NH4+, K+ Mg2+, Ca2+, Ba2+, and Sr2+. Meanwhile,IC witha suppressed system was used for the determination of 7 anions such as F-, Cl-, NO2-, Br-, NO3-, SO42-, and PO43-. A solution of 2.5 mmol/L HNO3 and a combination of 6 mmol/L Na2CO3 and 0.5 mmol/L NaHCO3 were used as the eluent for the determination of mineral cations and anions, respectively.</p>


2020 ◽  
Vol 32 (6) ◽  
pp. 1393-1398

In present study, ionic profile of pharmaceutical drug molecule ferric pyrophosphate citrate by ion exchange chromatography using conductivity detection was carried out. Ferric pyrophosphate citrate is an iron organic complex used for hemodialysis for the chronic kidney disease patients. The drug is used as iron supplementation to balance the iron loss during the dialysis for the kidney affected patients. Anions, cation and metal ion were analyzed by ion chromatographic method. Relevant anions sulphate, phosphate, citrate and pyrophosphate were analyzed by suppressed conductivity detection. Both isocratic and gradient separation methods were developed for the anions analysis. Cation sodium was analyzed by non-suppressed conductivity detection. Metal iron was determined by direct conductivity detection. All the analyses were done covering selectivity, precision, linearity and accuracy aspects of analysis. Calibration outcome of RSD 0.4 to 3.0% and correlation coefficient values greater than 0.999 were observed during the studies. Spiking studies were done to check the accuracy of the analysis and the recovery values ranging from 93 to 110% were observed. Around 90% ionic content of the drug molecule can be characterized using the developed ion chromatographic methods. These methods can be directly applied for the routine analysis of drug in the pharmaceutical industries.


RSC Advances ◽  
2017 ◽  
Vol 7 (10) ◽  
pp. 5920-5927 ◽  
Author(s):  
Dan Wei ◽  
Xu Wang ◽  
Nani Wang ◽  
Yan Zhu

A simple and rapid column-switching ion chromatography with non-suppressed conductivity detection method was developed for simultaneous determination ofl-carnitine, choline and mineral ions in milk and powdered infant formula samples.


Sign in / Sign up

Export Citation Format

Share Document