biomedical ontology
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 28)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Astghik Sargsyan ◽  
Philipp Wegner ◽  
Stephan Gebel ◽  
Shounak Baksi ◽  
Geena Mariya Jose ◽  
...  

Abstract Motivation: Epilepsy is a multi-faceted complex disorder that requires a precise understanding of the classification, diagnosis, treatment, and disease mechanism governing it. Although scattered resources are available on epilepsy, comprehensive and structured knowledge is missing. In contemplation to promote multidisciplinary knowledge exchange and facilitate advancement in clinical management, especially in pre-clinical research, a disease-specific ontology is necessary. The presented ontology is designed to enable better interconnection between scientific community members in the epilepsy domain.Results: The Epilepsy Ontology (EPIO) is an assembly of structured knowledge on various aspects of epilepsy, developed according to Basic Formal Ontology (BFO) and Open Biological and Biomedical Ontology (OBO) Foundry principles. Concepts and definitions are collected from the latest International League against Epilepsy (ILAE) classification, domain-specific ontologies, and scientific literature. This ontology consists of 1,879 classes and 28,151 axioms (2,171 declaration axioms, 2,219 logical axioms) from several aspects of epilepsy. This ontology is intended to be used for data management and text mining purposes.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1287
Author(s):  
Xingsi Xue ◽  
Pei-Wei Tsai ◽  
Yucheng Zhuang

To integrate massive amounts of heterogeneous biomedical data in biomedical ontologies and to provide more options for clinical diagnosis, this work proposes an adaptive Multi-modal Multi-Objective Evolutionary Algorithm (aMMOEA) to match two heterogeneous biomedical ontologies by finding the semantically identical concepts. In particular, we first propose two evaluation metrics on the alignment’s quality, which calculate the alignment’s statistical and its logical features, i.e., its f-measure and its conservativity. On this basis, we build a novel multi-objective optimization model for the biomedical ontology matching problem. By analyzing the essence of this problem, we point out that it is a large-scale Multi-modal Multi-objective Optimization Problem (MMOP) with sparse Pareto optimal solutions. Then, we propose a problem-specific aMMOEA to solve this problem, which uses the Guiding Matrix (GM) to adaptively guide the algorithm’s convergence and diversity in both objective and decision spaces. The experiment uses Ontology Alignment Evaluation Initiative (OAEI)’s biomedical tracks to test aMMOEA’s performance, and comparisons with two state-of-the-art MOEA-based matching techniques and OAEI’s participants show that aMMOEA is able to effectively determine diverse solutions for decision makers.


2021 ◽  
Vol 21 (S6) ◽  
Author(s):  
James E. Harrison ◽  
Stefanie Weber ◽  
Robert Jakob ◽  
Christopher G. Chute

Abstract Background The International Classification of Diseases (ICD) has long been the main basis for comparability of statistics on causes of mortality and morbidity between places and over time. This paper provides an overview of the recently completed 11th revision of the ICD, focusing on the main innovations and their implications. Main text Changes in content reflect knowledge and perspectives on diseases and their causes that have emerged since ICD-10 was developed about 30 years ago. Changes in design and structure reflect the arrival of the networked digital era, for which ICD-11 has been prepared. ICD-11’s information framework comprises a semantic knowledge base (the Foundation), a biomedical ontology linked to the Foundation and classifications derived from the Foundation. ICD-11 for Mortality and Morbidity Statistics (ICD-11-MMS) is the primary derived classification and the main successor to ICD-10. Innovations enabled by the new architecture include an online coding tool (replacing the index and providing additional functions), an application program interface to enable remote access to ICD-11 content and services, enhanced capability to capture and combine clinically relevant characteristics of cases and integrated support for multiple languages. Conclusions ICD-11 was adopted by the World Health Assembly in May 2019. Transition to implementation is in progress. ICD-11 can be accessed at icd.who.int.


2021 ◽  
Vol 32 (4) ◽  
pp. 14-27
Author(s):  
Xingsi Xue ◽  
Chao Jiang ◽  
Jie Zhang ◽  
Cong Hu

Biomedical ontology formally defines the biomedical entities and their relationships. However, the same biomedical entity in different biomedical ontologies might be defined in diverse contexts, resulting in the problem of biomedicine semantic heterogeneity. It is necessary to determine the mappings between heterogeneous biomedical entities to bridge the semantic gap, which is the so-called biomedical ontology matching. Due to the plentiful semantic meaning and flexible representation of biomedical entities, the biomedical ontology matching problem is still an open challenge in terms of the alignment's quality. To face this challenge, in this work, the biomedical ontology matching problem is deemed as a binary classification problem, and an attention-based bidirectional long short-term memory network (At-BLSTM)-based ontology matching technique is presented to address it, which is able to capture the semantic and contextual feature of biomedical entities. In the experiment, the comparisons with state-of-the-art approaches show the effectiveness of the proposal.


2021 ◽  
Vol 30 (01) ◽  
pp. 189-189

Le DH. UFO: A tool for unifying biomedical ontology-based semantic similarity calculation, enrichment analysis and visualization. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235670 Robinson PN, Ravanmehr V, Jacobsen JOB, Danis D, Zhang XA, Carmody LC, Gargano MA, Thaxton CL, Core UNCB, Karlebach G, Reese J, Holtgrewe M, Kohler S, McMurry JA, Haendel MA, Smedley D. Interpretable Clinical Genomics with a Likelihood Ratio Paradigm. https://www.cell.com/ajhg/fulltext/S0002-9297(20)30230-5 Slater LT, Gkoutos GV, Hoehndorf R. Towards semantic interoperability: finding and repairing hidden contradictions in biomedical ontologies. https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-020-01336-2 Zheng F, Shi J, Yang Y, Zheng WJ, Cui L. A transformation-based method for auditing the IS-A hierarchy of biomedical terminologies in the Unified Medical Language System. https://pubmed.ncbi.nlm.nih.gov/32918476/


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andreea Grigoriu ◽  
Amrapali Zaveri ◽  
Gerhard Weiss ◽  
Michel Dumontier

Abstract Background The amount of available data, which can facilitate answering scientific research questions, is growing. However, the different formats of published data are expanding as well, creating a serious challenge when multiple datasets need to be integrated for answering a question. Results This paper presents a semi-automated framework that provides semantic enhancement of biomedical data, specifically gene datasets. The framework involved a concept recognition task using machine learning, in combination with the BioPortal annotator. Compared to using methods which require only the BioPortal annotator for semantic enhancement, the proposed framework achieves the highest results. Conclusions Using concept recognition combined with machine learning techniques and annotation with a biomedical ontology, the proposed framework can provide datasets to reach their full potential of providing meaningful information, which can answer scientific research questions.


Author(s):  
Omid Yousefianzadeh ◽  
Abolfazl Taheri

The high incidence of coronavirus disease (COVID-19) and the resulting increase in data and information in this area have led medical centers to use different methods to manage them due to the huge amount of information. One of the best ways to avoid confusion in documenting and managing health information is to use new information tools such as ontology. Researchers have used a tool around the world since the late 1990s to support decision-making in various fields. In this regard, the National Center for Biomedical Ontology has established a medical ontology database called BioPortal. In the present research, published ontologies in the field of Covid-19 in this database have been explored.


Author(s):  
Olga Acosta ◽  
César Aguilar

This article sketches the development of a method for mining concepts applied on medical corpora in Spanish. Such method is based in the approach formulated by Ananiadou and McNaught, who give a special relevance to the need to create and use natural language processing (NLP) tools, in order to extract information from large collections of documents, such as PubMed (www.ncbi.nlm.nih.gov/pubmed/). Thanks to this repository, projects such as the Corpus Genia (www.geniaproject.org), the MEDIE search engine (www.nactem.ac.uk/medie/), which considers syntactic criteria and semantics to extract medical concepts, or the Open Biological and Biomedical Ontology Project (http://obofoundry.org/), which focuses on the development of ontologies that provide an organized knowledge system in biomedicine. Particularly, this proposal focused in two objectives: (1) the extraction of specialized terms and (2) the identification of lexical-semantic relationships, in concrete hyponymy/hypernymy and meronymy.


2020 ◽  
Vol 10 (21) ◽  
pp. 7909
Author(s):  
Jifang Wu ◽  
Jianghua Lv ◽  
Haoming Guo ◽  
Shilong Ma

Ontology Matching (OM) is performed to find semantic correspondences between the entity elements of different ontologies to enable semantic integration, reuse, and interoperability. Representation learning techniques have been introduced to the field of OM with the development of deep learning. However, there still exist two limitations. Firstly, these methods only focus on the terminological-based features to learn word vectors for discovering mappings, ignoring the network structure of ontology. Secondly, the final alignment threshold is usually determined manually within these methods. It is difficult for an expert to adjust the threshold value and even more so for a non-expert user. To address these issues, we propose an alternative ontology matching framework called Deep Attentional Embedded Ontology Matching (DAEOM), which models the matching process by embedding techniques with jointly encoding ontology terminological description and network structure. We propose a novel inter-intra negative sampling skill tailored for the structural relations asserted in ontologies, and further improve our iterative final alignment method by introducing an automatic adjustment of the final alignment threshold. The preliminary result on real-world biomedical ontologies indicates that DAEOM is competitive with several OAEI top-ranked systems in terms of F-measure.


Sign in / Sign up

Export Citation Format

Share Document