heart rate analysis
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 26)

H-INDEX

19
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261572
Author(s):  
Omar T. Hammouda ◽  
Meng Yue Wu ◽  
Verena Kaul ◽  
Jakob Gierten ◽  
Thomas Thumberger ◽  
...  

Genetics crucially contributes to cardiovascular diseases (CVDs), the global leading cause of death. Since the majority of CVDs can be prevented by early intervention there is a high demand for the identification of predictive causative genes. While genome wide association studies (GWAS) correlate genes and CVDs after diagnosis and provide a valuable resource for such causative candidate genes, often preferentially those with previously known or suspected function are addressed further. To tackle the unaddressed blind spot of understudied genes, we particularly focused on the validation of human heart phenotype-associated GWAS candidates with little or no apparent connection to cardiac function. Building on the conservation of basic heart function and underlying genetics from fish to human we combined CRISPR/Cas9 genome editing of the orthologs of human GWAS candidates in isogenic medaka with automated high-throughput heart rate analysis. Our functional analyses of understudied human candidates uncovered a prominent fraction of heart rate associated genes from adult human patients impacting on the heart rate in embryonic medaka already in the injected generation. Following this pipeline, we identified 16 GWAS candidates with potential diagnostic and predictive power for human CVDs.


2021 ◽  
Vol 14 (1) ◽  
pp. 73-86
Author(s):  
Iaroslav Lytvynenko ◽  
Serhii Lupenko ◽  
Petro Onyskiv ◽  
Andriy Zozulia

Aims: We have developed a new approach to the study of human heart rate, which is based on the use of a vector rhythmocardiosignal, which includes as its component the classical rhythmocardiosignal in the form of a sequence of heart cycle durations in an electrocardiogram. Background: Most modern automated heart rate analysis systems are based on a statistical analysis of the rhythmocardiogram, which is an ordered set of R-R interval durations in a recorded electrocardiogram. However, this approach is not very informative, since R-R intervals reflect only the change in the duration of cardiac cycles over time and not the entire set of time intervals between single-phase values of the electrocardiosignal for all its phases. Objective: The aim of this paper is to present a mathematical model in the form of a vector of stationary and permanently connected random sequences of a rhythmocardiosignal with an increased resolution for its processing problems. It shows how the vector rhythmocardiosignal is formed and processed in diagnostic systems. The structure of probabilistic characteristics of this model is recorded for statistical analysis of heart rate in modern cardiodiagnostics systems. Methods: Based on a new mathematical model of a vector rhythmocardiosignal in the form of a vector of stationary and permanently connected random sequences, new methods for statistical estimation of spectral-correlation characteristics of heart rate with increased resolution have been developed. Results: The spectral power densities of the components of the vector rhythmocardiosignal are justified as new diagnostic features when performing rhythm analysis in modern cardiodiagnostics systems, complementing the known signs and increasing the informative value of heart rate analysis in modern cardiodiagnostics systems. Conclusion: The structure of probabilistic characteristics of the proposed mathematical model for heart rate analysis in modern cardiodiagnostics systems is studied. It is shown how the vector rhythmocardiosignal is formed, and its statistical processing is carried out on the basis of the proposed mathematical model and developed methods.


2021 ◽  
Author(s):  
Laurent Stubbe ◽  
Nicolas Houel ◽  
François Cottin

Abstract Measuring breathing rates without a mouthpiece is of interest in clinical settings. Electrocardiogram devices and, more recently, optoelectronic plethysmography (OEP) methods can estimate breathing rates with only a few electrodes or motion-capture markers placed on the patient. This study estimated and compared the accuracy and reliability of three non-invasive devices: an OEP system with 12 markers, an electrocardiogram device and the conventional spirometer. Using the three devices simultaneously, we recorded 72 six-minute epochs on supine subjects. Our results show that the OEP system has a very low limit of agreement and a bias lower than 0.4% compared with the spirometer, indicating that these devices can be used interchangeably. We observed comparable results for electrocardiogram devices. The OEP system facilitates breathing rate measurements and offers a more complete chest-lung volume analysis that can be easily associated with heart rate analysis without any synchronisation process, for useful features for clinical applications and intensive care.


2021 ◽  
Vol 10 (8) ◽  
pp. e41310817002
Author(s):  
Leandro de Oliveira Sant'Ana ◽  
Fabiana Rodrigues Scartoni ◽  
Patrícia Panza ◽  
Bernardo dos Santos Coelho ◽  
Tiago da Silva Ferreira ◽  
...  

Introduction: Different mechanical behaviors in resistance training can result in certain changes in the cardiovascular system. Objective: To verify the acute behavior of the main cardiovascular variables (heart rate, blood pressure, and double product) when performing resistance training with mono and multiarticular exercises. Methods: 10 male subjects participated in the study (26 ± 4 years; 81 ± 6 kg; 1.77 ± 2 m; 23 ± 1 kg / m2). They performed a test and retest for 8RM in the bench press and crucifix exercises on the machine. After the loads were outlined, they performed the intervention with the exercises, initially with a monoarticular activation containing two sets of 12 repetitions with 50% of the load acquired in the 8RM test of each exercise, using an interval of 60 seconds between one set and another. Additionally, three sets of 8 repetitions (80% 8RM) were performed with an interval between sets of 120 seconds. The execution speed was determined at a moderate level (2s for concentric, 2s for eccentric). It was measured before and during (series 1, series two, and series 3. Named as moments) heart rate exercises using POLAR, model RS800CX Multisport® and blood pressure using OMRON M6 (HEM-7001- E) ®. Then, the double product was calculated using the formula [HR (bpm) X SBP (mmHg)]. Results: In the heart rate analysis, there was an intra-condition difference for moments 1, 2, and 3 compared to rest (p <0.000). In the inter-condition comparison, no differences were observed for rest (p = 0.994) and for moments 1, 2 and 3 (p> 0.999). In systolic blood pressure, intra-conditions, differences were observed for moments 1, 2, and 3 compared to rest (p <0.000). In the inter-condition comparisons, there were no differences between rest (p> 0.999), moment 1 (p = 0.714), 2 (p = 0.999) and 3 (p> 0.999). For diastolic blood pressure, intra conditions, for bench press no significant differences were found for moments 1 (p = 0.331), 2 (p = 0.505) and 3 (p = 0.505) when compared to rest. In the same way it was for the crucifix, wherein the comparison with rest, no difference was observed in moments 1 (p = 0.849), 2 (p = 0.195) and 3 (p = 0.105). In the same sense, no difference was also observed in the comparisons between conditions for rest (p> 0.999), moment 1 (p = 0.999), 2 (p = 0.989) and 3 (p = 0.948). Finally, the double product in intra-condition comparisons found differences between moments 1, 2, and 3 compared to rest (p <0.000). However, in the inter-condition comparisons, no difference was observed at rest (p = 0.999), moment 1 (p = 0.868), 2 and 3 (p> 0.999). Conclusion: It is suggested that resistance training composed of mono and multi-joint exercises offers differences in hemodynamic responses but without differences between the types of mechanics applied by the exercises. Therefore, these results offer a partiality of what can happen with heart rate, blood pressure, and double product.


Author(s):  
Anna Sabatini ◽  
Giulio Iannello ◽  
Giorgio Pennazza ◽  
Marco Santonico ◽  
Mariassunta Spinosa ◽  
...  

Author(s):  
Dr. H Dupuis ◽  
L Ghesquière ◽  
A Pierache ◽  
D Subtil ◽  
V Houfflin-Debarge ◽  
...  

Author(s):  
Mohammad Karimi Moridani ◽  
Tina Habikazemi ◽  
Nahid Khoramabadi

<p>Heart rate is one of the most important vital signs. People usually face high tension in routine life, and if we found an effective method to control the heart rate, it would be very desirable. One of the goals of this paper is to examine changes in heart rate before and during meditation. Another goal is that what impact could have meditation on the human heartbeat.</p><p>To heart rate analysis before and during meditation, available heart rate signals have been used for the Physionet database that contains 10 normal subjects and 8 subjects that meditation practice has been done on them. In this paper, first is paid to extract linear and nonlinear characteristics of heart rate and then is paid to the best combination of features to identify two intervals before and during meditation using MLP and SVM classifiers with the help of sensitivity, specificity and accuracy measurements.</p><p>The achieved results in this paper showed that choosing the best combination of a feature to make a meaningful difference between two intervals before and during meditation includes two-time features (Mean HR, SDNN), a frequency feature ( ), and three nonlinear characteristics   ( ). Also, using the support vector machine had better results than the MLP neural network. The sensitivity, specificity, and accuracy of the mean and standard deviation obtained respectively like 92.73  0.23, 89.05 0.67, 89.97 0.23 by using MLP and respectively like 95.96 0.09, 93.80 0.16, and 94.90 0.14 by using SVM.</p>As a result, using meditation can reduce the stress and anxiety of patients by effects on heart rate, and the treatment process speeds up and have an important role in improving the performance of the system.


2021 ◽  
Author(s):  
Omar T. Hammouda ◽  
Meng Yue Wu ◽  
Verena Kaul ◽  
Thomas Thumberger ◽  
Joachim Wittbrodt

AbstractGenetics crucially contributes to cardiovascular diseases (CVDs), the global leading cause of death. Since the majority of CVDs can be prevented by early intervention there is a high demand for predictive markers. While genome wide association studies (GWAS) correlate genes and CVDs after diagnosis and provide a valuable resource for such markers, preferentially those with pre-assigned function are addressed further. To tackle the unaddressed blind spot of understudied genes, we particularly focused on the validation of heart GWAS candidates with little or no apparent connection to cardiac function. Building on the high conservation of basic heart function and underlying genetics from fish to human we combined CRISPR/Cas9 genome editing of the orthologs of human GWAS candidates in isogenic medaka with automated high-throughput heart rate analysis. Our functional analyses of understudied human candidates uncovered a prominent fraction of heart rate associated genes from adult human patients displaying a heart rate effect in embryonic medaka already in the injected generation. Following this pipeline, we identified 16 GWAS candidates with potential diagnostic and predictive power for human CVDs.


Sign in / Sign up

Export Citation Format

Share Document