scholarly journals Mean sea level variability in the North Sea: Processes and implications

2014 ◽  
Vol 119 (10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Sönke Dangendorf ◽  
Francisco M. Calafat ◽  
Arne Arns ◽  
Thomas Wahl ◽  
Ivan D. Haigh ◽  
...  
Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Caroline Rasquin ◽  
Rita Seiffert ◽  
Benno Wachler ◽  
Norbert Winkel

Abstract. Due to climate change an accelerated mean sea level rise is expected. One key question for the development of adaptation measures is how mean sea level rise affects tidal dynamics in shelf seas such as the North Sea. Owing to its low-lying coastal areas, the German Bight (located in the southeast of the North Sea) will be especially affected. Numerical hydrodynamic models help to understand how mean sea level rise changes tidal dynamics. Models cannot adequately represent all processes in overall detail. One limiting factor is the resolution of the model grid. In this study we investigate which role the representation of the coastal bathymetry plays when analysing the response of tidal dynamics to mean sea level rise. Using a shelf model including the whole North Sea and a high-resolution hydrodynamic model of the German Bight we investigate the changes in M2 amplitude due to a mean sea level rise of 0.8 and 10 m. The shelf model and the German Bight Model react in different ways. In the simulations with a mean sea level rise of 0.8 m the M2 amplitude in the shelf model generally increases in the region of the German Bight. In contrast, the M2 amplitude in the German Bight Model increases only in some coastal areas and decreases in the northern part of the German Bight. In the simulations with a mean sea level rise of 10 m the M2 amplitude increases in both models with largely similar spatial patterns. In two case studies we adjust the German Bight Model in order to more closely resemble the shelf model. We find that a different resolution of the bathymetry results in different energy dissipation changes in response to mean sea level rise. Our results show that the resolution of the bathymetry especially in flat intertidal areas plays a crucial role for modelling the impact of mean sea level rise.


2018 ◽  
Vol 9 (1) ◽  
pp. 69-90 ◽  
Author(s):  
Sitar Karabil ◽  
Eduardo Zorita ◽  
Birgit Hünicke

Abstract. The main purpose of this study is to quantify the contribution of atmospheric factors to recent off-shore sea-level variability in the Baltic Sea and the North Sea on interannual timescales. For this purpose, we statistically analysed sea-level records from tide gauges and satellite altimetry and several climatic data sets covering the last century. Previous studies had concluded that the North Atlantic Oscillation (NAO) is the main pattern of atmospheric variability affecting sea level in the Baltic Sea and the North Sea in wintertime. However, we identify a different atmospheric circulation pattern that is more closely connected to sea-level variability than the NAO. This circulation pattern displays a link to sea level that remains stable through the 20th century, in contrast to the much more variable link between sea level and the NAO. We denote this atmospheric variability mode as the Baltic Sea and North Sea Oscillation (BANOS) index. The sea-level pressure (SLP) BANOS pattern displays an SLP dipole with centres of action located over (5° W, 45° N) and (20° E, 70° N) and this is distinct from the standard NAO SLP pattern in wintertime. In summertime, the discrepancy between the SLP BANOS and NAO patterns becomes clearer, with centres of action of the former located over (30° E, 45° N) and (20° E, 60° N). This index has a stronger connection to off-shore sea-level variability in the study area than the NAO in wintertime for the period 1993–2013, explaining locally up to 90 % of the interannual sea-level variance in winter and up to 79 % in summer. The eastern part of the Gulf of Finland is the area where the BANOS index is most sensitive to sea level in wintertime, whereas the Gulf of Riga is the most sensitive region in summertime. In the North Sea region, the maximum sea-level sensitivity to the BANOS pattern is located in the German Bight for both winter and summer seasons. We investigated, and when possible quantified, the contribution of several physical mechanisms which may explain the link between the sea-level variability and the atmospheric pattern described by the BANOS index. These mechanisms include the inverse barometer effect (IBE), freshwater balance, net energy surface flux and wind-induced water transport. We found that the most important mechanism is the IBE in both wintertime and summertime. Assuming a complete equilibration of seasonal sea level to the SLP gradients over this region, the IBE can explain up to 88 % of the sea-level variability attributed to the BANOS index in wintertime and 34 % in summertime. The net energy flux at the surface is found to be an important factor for the variation of sea level, explaining 35 % of sea-level variance in wintertime and a very small amount in summer. The freshwater flux could only explain 27 % of the variability in summertime and a negligible part in winter. In contrast to the NAO, the direct wind forcing associated with the SLP BANOS pattern does not lead to transport of water from the North Sea into the Baltic Sea in wintertime.


2011 ◽  
Vol 11 (4) ◽  
pp. 1205-1216 ◽  
Author(s):  
L. Gaslikova ◽  
A. Schwerzmann ◽  
C. C. Raible ◽  
T. F. Stocker

Abstract. The influence of climate change on storm surges including increased mean sea level change and the associated insurable losses are assessed for the North Sea basin. In doing so, the newly developed approach couples a dynamical storm surge model with a loss model. The key element of the approach is the generation of a probabilistic storm surge event set. Together with parametrizations of the inland propagation and the coastal protection failure probability this enables the estimation of annual expected losses. The sensitivity to the parametrizations is rather weak except when the assumption of high level of increased mean sea level change is made. Applying this approach to future scenarios shows a substantial increase of insurable losses with respect to the present day. Superimposing different mean sea level changes shows a nonlinear behavior at the country level, as the future storm surge changes are higher for Germany and Denmark. Thus, the study exhibits the necessity to assess the socio-economic impacts of coastal floods by combining the expected sea level rise with storm surge projections.


2013 ◽  
Vol 165 ◽  
pp. 1987-1992 ◽  
Author(s):  
Thomas Wahl ◽  
Ivan D. Haigh ◽  
Sönke Dangendorf ◽  
Jürgen Jensen

2020 ◽  
Vol 70 (12) ◽  
pp. 1547-1569
Author(s):  
Antonio Bonaduce ◽  
Joanna Staneva ◽  
Sebastian Grayek ◽  
Jean-Raymond Bidlot ◽  
Øyvind Breivik

AbstractThe contribution of sea-state-induced processes to sea-level variability is investigated through ocean-wave coupled simulations. These experiments are performed with a high-resolution configuration of the Geestacht COAstal model SysTem (GCOAST), implemented in the Northeast Atlantic, the North Sea and the Baltic Sea which are considered as connected basins. The GCOAST system accounts for wave-ocean interactions and the ocean circulation relies on the NEMO (Nucleus for European Modelling of the Ocean) ocean model, while ocean-wave simulations are performed using the spectral wave model WAM. The objective is to demonstrate the contribution of wave-induced processes to sea level at different temporal and spatial scales of variability. When comparing the ocean-wave coupled experiment with in situ data, a significant reduction of the errors (up to 40% in the North Sea) is observed, compared with the reference. Spectral analysis shows that the reduction of the errors is mainly due to an improved representation of sea-level variability at temporal scales up to 12 h. Investigating the representation of sea-level extremes in the experiments, significant contributions (> 20%) due to wave-induced processes are observed both over continental shelf areas and in the Atlantic, associated with different patterns of variability. Sensitivity experiments to the impact of the different wave-induced processes show a major impact of wave-modified surface stress over the shelf areas in the North Sea and in the Baltic Sea. In the Atlantic, the signature of wave-induced processes is driven by the interaction of wave-modified momentum flux and turbulent mixing, and it shows its impact to the occurrence of mesoscale features of the ocean circulation. Wave-induced energy fluxes also have a role (10%) in the modulation of surge at the shelf break.


2013 ◽  
Vol 124 ◽  
pp. 51-67 ◽  
Author(s):  
T. Wahl ◽  
I.D. Haigh ◽  
P.L. Woodworth ◽  
F. Albrecht ◽  
D. Dillingh ◽  
...  

2019 ◽  
Author(s):  
Caroline Rasquin ◽  
Rita Seiffert ◽  
Benno Wachler ◽  
Norbert Winkel

Abstract. Due to climate change an accelerated mean sea level rise is expected. One key question for the development of adaptation measures is how mean sea level rise affects tidal dynamics in shelf seas such as the North Sea. Owing to its flat coastal areas, especially the German Bight (located in the south-east of the North Sea) will be affected. Numerical hydrodynamic models help to understand how mean sea level rise changes tidal dynamics. By definition models cannot represent all processes in overall detail. One limiting factor is the resolution of the model grid. In this study we investigate which role the representation of the coastal bathymetry plays when analysing the response of tidal dynamics to mean sea level rise. Using a shelf model including the whole North Sea and a high-resolution hydrodynamic model of the German Bight we investigate the changes in M2 amplitude due to a mean sea level rise of 0.8 m and 10 m. To the mean sea level rise of 0.8 m the shelf model and the German Bight Model react in different ways. In the shelf model the M2 amplitude generally increases in the region of the German Bight. In contrast, the M2 amplitude in the German Bight Model increases only in some coastal areas and decreases in the northern part of the German Bight. In two case studies we adjust the German Bight Model in order to more closely resemble the shelf model. We find that a different resolution of the bathymetry results in different energy dissipation changes in response to mean sea level rise. Our results show that the resolution of the bathymetry especially in flat intertidal areas plays a crucial role for modelling the impact of mean sea level rise in the order of 1 m. For higher mean sea level rise scenarios (10 m) the resolution of the bathymetry is less important.


Sign in / Sign up

Export Citation Format

Share Document