scholarly journals Spatial slip behavior of large strike‐slip fault belts: Implications for the Holocene slip rates of the eastern termination of the North Anatolian Fault, Turkey

2015 ◽  
Vol 120 (12) ◽  
pp. 8591-8609 ◽  
Author(s):  
Cengiz Zabcı ◽  
Taylan Sançar ◽  
H. Serdar Akyüz ◽  
Nafiye Güneç Kıyak
2018 ◽  
Vol 745 ◽  
pp. 183-195 ◽  
Author(s):  
George Ferentinos ◽  
Nikos Georgiou ◽  
Dimitris Christodoulou ◽  
Maria Geraga ◽  
George Papatheodorou

2014 ◽  
Vol 51 (3) ◽  
pp. 222-242 ◽  
Author(s):  
A.M. Celâl Şengör ◽  
Céline Grall ◽  
Caner İmren ◽  
Xavier Le Pichon ◽  
Naci Görür ◽  
...  

The North Anatolian Fault is a 1200 km long strike-slip fault system connecting the East Anatolian convergent area with the Hellenic subduction zone and, as such, represents an intracontinental transform fault. It began forming some 13–11 Ma ago within a keirogen, called the North Anatolian Shear Zone, which becomes wider from east to west. Its width is maximum at the latitude of the Sea of Marmara, where it is 100 km. The Marmara Basin is unique in containing part of an active strike-slip fault system in a submarine environment in which there has been active sedimentation in a Paratethyan context where stratigraphic resolution is higher than elsewhere in the Mediterranean. It is also surrounded by a long-civilised rim where historical records reach well into the second half of the first millennium BCE (before common era). In this study, we have used 210 multichannel seismic reflexion profiles, adding up to 6210 km profile length and high-resolution bathymetry and chirp profiles reported in the literature to map all the faults that are younger than the Oligocene. Within these faults, we have distinguished those that cut the surface and those that do not. Among the ones that do not cut the surface, we have further created a timetable of fault generation based on seismic sequence recognition. The results are surprising in that faults of all orientations contain subsets that are active and others that are inactive. This suggests that as the shear zone evolves, faults of all orientations become activated and deactivated in a manner that now seems almost haphazard, but a tendency is noticed to confine the overall movement to a zone that becomes narrower with time since the inception of the shear zone, i.e., the whole keirogen, at its full width. In basins, basin margins move outward with time, whereas highs maintain their faults free of sediment cover, making their dating difficult, but small perched basins on top of them in places make relative dating possible. In addition, these basins permit comparison of geological history of the highs with those of the neighbouring basins. The two westerly deeps within the Sea of Marmara seem inherited structures from the earlier Rhodope–Pontide fragment/Sakarya continent collision, but were much accentuated by the rise of the intervening highs during the shear evolution. When it is assumed that below 10 km depth the faults that now constitute the Marmara fault family might have widths approaching 4 km, the resulting picture resembles a large version of an amphibolite-grade shear zone fabric, an inference in agreement with the scale-independent structure of shear zones. We think that the North Anatolian Fault at depth has such a fabric not only on a meso, but also on a macro scale. Detection of such broad, vertical shear zones in Precambrian terrains may be one way to get a handle on relative plate motion directions during those remote times.


GeoHazards ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 415-429
Author(s):  
Paraskevi Nomikou ◽  
Dimitris Evangelidis ◽  
Dimitrios Papanikolaou ◽  
Danai Lampridou ◽  
Dimitris Litsas ◽  
...  

A hydrographic survey of the southwestern coastal margin of Lesvos Island (Greece) was conducted by the Naftilos vessel of the Hellenic Hydrographic Service. The results have been included in a bathymetric map and morphological slope map of the area. Based on the neotectonic and seismotectonic data of the broader area, a morphotectonic map of Lesvos Island has been compiled. The main feature is the basin sub-parallel to the coast elongated Lesvos Basin, 45 km long, 10–35 km wide, and 700 m deep. The northern margin of the basin is abrupt, with morphological slopes towards the south between 35° and 45° corresponding to a WNW-ESE normal fault, in contrast with the southern margin that shows a gradual slope increase from 1° to 5° towards the north. Thus, the main Lesvos Basin represents a half-graben structure. The geometry of the main basin is interrupted at its eastern segment by an oblique NW-SE narrow channel of 650 m depth and 8 km length. East of the channel, the main basin continues as a shallow Eastern Basin. At the western part of the Lesvos margin, the shallow Western Basin forms an asymmetric tectonic graben. Thus, the Lesvos southern margin is segmented in three basins with different morphotectonic characteristics. At the northwestern margin of Lesvos, three shallow basins of 300–400 m depth are observed with WNW-ESE trending high slope margins, probably controlled by normal faults. Shallow water marine terraces representing the last low stands of the glacial periods are observed at 140 m and 200 m depth at the two edges of the Lesvos margin. A secondary E-W fault disrupts the two terraces at the eastern part of the southern Lesvos margin. The NE-SW strike-slip fault zone of Kalloni-Aghia Paraskevi, activated in 1867, borders the west of the Lesvos Basin from the shallow Western Basin. The Lesvos bathymetric data were combined with those of the eastern Skyros Basin, representing the southern strand of the North Anatolian Fault in the North Aegean Sea, and the resulted tectonic map indicates that the three Lesvos western basins are pull-aparts of the strike-slip fault zone between the Skyros Fault and the Adramytion (Edremit) Fault. The seismic activity since 2017 has shown the co-existence of normal faulting and strike-slip faulting throughout the 90 km long Lesvos southern margin.


2021 ◽  
Author(s):  
Fabien Caroir ◽  
Frank Chanier ◽  
Virginie Gaullier ◽  
Julien Bailleul ◽  
Agnès Maillard-Lenoir ◽  
...  

<p>The Anatolia-Aegean microplate is currently extruding toward the South and the South-West. This extrusion is classically attributed to the southward retreat of the Aegean subduction zone together with the northward displacement of the Arabian plate. The displacement of Aegean-Anatolian block relative to Eurasia is accommodated by dextral motion along the North Anatolian Fault (NAF), with current slip rates of about 20 mm/yr. The NAF is propagating westward within the North Aegean domain where it gets separated into two main branches, one of them bordering the North Aegean Trough (NAT). This particular context is responsible for dextral and normal stress regimes between the Aegean plate and the Eurasian plate. South-West of the NAT, there is no identified major faults in the continuity of the NAF major branch and the plate boundary deformation is apparently distributed within a wide domain. This area is characterised by slip rates of 20 to 25 mm/yr relative to Eurasian plate but also by clockwise rotation of about 10° since ca 4 Myr. It constitutes a major extensional area involving three large rift basins: the Corinth Gulf, the Almiros Basin and the Sperchios-North Evia Gulf. The latter develops in the axis of the western termination of the NAT, and is therefore a key area to understand the present-day dynamics and the evolution of deformation within this diffuse plate boundary area.</p><p>Our study is mainly based on new structural data from field analysis and from very high resolution seismic reflexion profiles (Sparker 50-300 Joules) acquired during the WATER survey in July-August 2017 onboard the R/V “Téthys II”, but also on existing data on recent to active tectonics (i.e. earthquakes distribution, focal mechanisms, GPS data, etc.). The results from our new marine data emphasize the structural organisation and the evolution of the deformation within the North Evia region, SW of the NAT.</p><p>The combination of our structural analysis (offshore and onshore data) with available data on active/recent deformation led us to define several structural domains within the North Evia region, at the western termination of the North Anatolian Fault. The North Evia Gulf shows four main fault zones, among them the Central Basin Fault Zone (CBFZ) which is obliquely cross-cutting the rift basin and represents the continuity of the onshore Kamena Vourla - Arkitsa Fault System (KVAFS). Other major fault zones, such as the Aedipsos Politika Fault System (APFS) and the Melouna Fault Zone (MFZ) played an important role in the rift initiation but evolved recently with a left-lateral strike-slip motion. Moreover, our seismic dataset allowed to identify several faults in the Skopelos Basin including a large NW-dipping fault which affects the bathymetry and shows an important total vertical offset (>300m). Finally, we propose an update of the deformation pattern in the North Evia region including two lineaments with dextral motion that extend southwestward the North Anatolian Fault system into the Oreoi Channel and the Skopelos Basin. Moreover, the North Evia Gulf domain is dominated by active N-S extension and sinistral reactivation of former large normal faults.</p>


1979 ◽  
Vol 69 (2) ◽  
pp. 427-444
Author(s):  
C. J. Langer ◽  
G. A. Bollinger

abstract Aftershocks of the February 4, 1976 Guatemalan earthquake (Ms = 7.5) were monitored by a network of portable seismographs from February 9 to February 27. Although seismic data were obtained all along the 230-km surface rupture of the causal Motagua fault, the field program was designed to concentrate on the aftershock activity at the western terminus of the fault. Data from that locale revealed several linear or near-linear trends of aftershock epicenters that splay to the southwest away from the western end of the main fault. These trends correlate spatially with mapped surface lineaments and, to some degree, with ground breakage patterns near Guatemala City. The observed splay pattern of aftershocks and the normal-faulting mode of the splay earthquakes determined from composite focal mechanism solutions, may be explained by a theoretical pattern of stress trajectories at the terminus of a strike-slip fault. Composite focal mechanism solutions for aftershocks located on or near the surface break of the Motagua fault, to the north and east of the linear trend splay area, agree with the mapped surface movements, i.e., left-lateral strike-slip.


2020 ◽  
Vol 27 (1) ◽  
pp. petgeo2019-144
Author(s):  
Ziyi Wang ◽  
Zhiqian Gao ◽  
Tailiang Fan ◽  
Hehang Zhang ◽  
Lixin Qi ◽  
...  

The SB1 strike-slip fault zone, which developed in the north of the Shuntuo Low Uplift of the Tarim Basin, plays an essential role in reservoir formation and hydrocarbon accumulation in deep Ordovician carbonate rocks. In this research, through the analysis of high-quality 3D seismic volumes, outcrop, drilling and production data, the hydrocarbon-bearing characteristics of the SB1 fault are systematically studied. The SB1 fault developed sequentially in the Paleozoic and formed as a result of a three-fold evolution: Middle Caledonian (phase III), Late Caledonian–Early Hercynian and Middle–Late Hercynian. Multiple fault activities are beneficial to reservoir development and hydrocarbon filling. In the Middle–Lower Ordovician carbonate strata, linear shear structures without deformation segments, pull-apart structure segments and push-up structure segments alternately developed along the SB1 fault. Pull-apart structure segments are the most favourable areas for oil and gas accumulation. The tight fault core in the centre of the strike-slip fault zone is typically a low-permeability barrier, whilst the damage zones on both sides of the fault core are migration pathways and accumulation traps for hydrocarbons, leading to heterogeneity in the reservoirs controlled by the SB1 fault. This study provides a reference for hydrocarbon exploration and development of similar deep-marine carbonate reservoirs controlled by strike-slip faults in the Tarim Basin and similar ancient hydrocarbon-rich basins.


2020 ◽  
Author(s):  
Jie Zhang ◽  
Zhiping Wu ◽  
Yanjun Cheng

<p>The horsetail structure, also named brush structure, generally refers to a sets of secondary faults converged to the primary fault on the plane. Based on 2-D and 3-D seismic data, the structural characteristics, evolution and mechanism of the horsetail structure of Liaodong Bay area in Bohai Bay Basin and Weixinan area in Beibuwan Basin are analyzed. In the Liaodong Bay area, the primary fault of the horsetail structure is the NNE-striking branch fault of Tan-Lu strike-slip fault zone. The NE-striking secondary extensional faults converged to the primary strike-slip fault. Fault activity analysis shows that both the primary and secondary faults intensively activated during the third Member of the Shahejie Formation (42~38 Ma). In the Weixinan area, the NE-striking Weixinan fault is the primary fault of the horsetail structure, which is an extensional fault. A large amount of EW-striking secondary extensional faults converged to the primary NE-striking Weixinan fault. Fault activity analysis shows that NE-striking primary fault intensively activated during the second Member of the Liushagang Formation (48.6~40.4 Ma), whereas the EW-striking secondary faults intensively activated during the Weizhou Formation (33.9~23 Ma). The different structure and evolution of the horsetail structure in the Liaodong Bay area and Weixinan area are mainly resulted from the regional tectonic settings. About 42 Ma, the change of subduction direction of the Pacific plate and the India-Eurasian collision resulted in the right-lateral strike-slip movement of NNE-striking Tan-Lu fault and the formation of NE-striking extensional faults along the bend of the strike-slip fault, therefore, the horsetail structure of Liaodong Bay area formed. However, the formation of the horsetail structure of Weixinan area is related to the clockwise rotation of extension stress in the South China Sea (SCS): 1) During Paleocene to M. Eocene (65~37.8 Ma), the retreat of Pacific plate subduction zone resulted in the formation of NW-SE extensional stress field in the north margin of the SCS, NE-striking primary fault of horsetail structure formed; 2) During L. Eocene to E. Oligocene (37.8~28.4 Ma), the change of subduction direction of the Pacific plate and the India-Eurasian collision resulted in the clockwise rotation of extension direction from NW-SE to N-S in the north margin of the SCS, a large amount of EW-striking secondary faults of horsetail structure formed, and the horsetail structure was totally formed in the Weixinan area until this stage.</p>


2006 ◽  
Vol 143 (2) ◽  
pp. 229-241 ◽  
Author(s):  
ÖMER FEYZI GÜRER ◽  
ERCAN SANGU ◽  
MUZAFFER ÖZBURAN

This study reports on the geometric and structural characteristics of the North Anatolian Fault Zone in the southwest Marmara region. The geometric and kinematic features of the faults in the region are described, based on field observations. In addition, the Neogene and Quaternary basin fill which occupies large areas in the region has been determined, and the tectonic regimes controlling these basins are explained. The neotectonic regime is also explained considering different deformation phases affecting the region. The N–S extension and E–W strike-slip have affected the region possibly since the latest Pliocene–Quaternary. Field observations show that these extensional tectonics around the south Marmara region are related to right strike-slip on the E–W North Anatolian fault zone and the N–S Aegean extensional system. The faults in this zone trend approximately E–W in the eastern part of the region and NE–SW towards the west of the region, indicating that they accommodate rotation in addition to differential movement between adjacent blocks.


Sign in / Sign up

Export Citation Format

Share Document