A Mathematical Model for Simulating the Microporosity of Squeeze Casting of Aluminum Alloy

Shape Casting ◽  
2011 ◽  
pp. 61-68
Author(s):  
Zhiqiang Han ◽  
Jinxi Li ◽  
Wen Yang ◽  
Baicheng Liu
2016 ◽  
Vol 850 ◽  
pp. 671-678
Author(s):  
Jian Wei Niu ◽  
Lie Jun Li ◽  
Hai Jun Liu ◽  
Ji Xiang Gao ◽  
Chuan Dong Ren

The inoculation and fading behavior of Sr-modified aluminum alloy A356. 2 were studied for air bag bracket produced by squeeze casting. The effects of Sr, P, B contents and casting temperature on the microstructure and eutectic silicon morphology in different periods of inoculation were investigated by SEM and direct-reading Spectrometer. The influence of inoculation fading rate and addition of Sr on the casting mechanical properties and hydrogen absorption was studied. The experimental results showed that the inoculation process was completed in 1 h, and the eutectic silicon morphology can be maintained in almost subsequent 40 h after the addition of Sr. The fading rate decreased appreciably with the increase of casing temperature, P and B contents. The deleterious effect of the inoculation fading of Sr on the casting mechanical property can be compensated by the squeeze casting.


2019 ◽  
Vol 266 ◽  
pp. 19-25 ◽  
Author(s):  
Gang Chen ◽  
Ming Yang ◽  
Yu Jin ◽  
Hongming Zhang ◽  
Fei Han ◽  
...  

2002 ◽  
Author(s):  
David Schwam ◽  
John F. Wallace ◽  
Qingming Chang ◽  
Yulong Zhu

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5278
Author(s):  
Yi Guo ◽  
Yongfei Wang ◽  
Shengdun Zhao

Scroll compressors are popularly applied in air-conditioning systems. The conventional fabrication process causes gas and shrinkage porosity in the scroll. In this paper, the electromagnetic stirring (EMS)-based semisolid multicavity squeeze casting (SMSC) process is proposed for effectively manufacturing wrought aluminum alloy scrolls. Insulation temperature, squeeze pressure, and the treatment of the micromorphology and mechanical properties of the scroll were investigated experimentally. It was found that reducing the insulation temperature can decrease the grain size, increase the shape factor, and improve mechanical properties. The minimum grain size was found as 111 ± 3 μm at the insulation temperature of 595 °C. The maximum tensile strength, yield strength, and hardness were observed as 386 ± 8 MPa, 228 ± 5 MPa, and 117 ± 5 HV, respectively, at the squeeze pressure of 100 MPa. The tensile strength and hardness of the scroll could be improved, and the elongation was reduced by the T6 heat treatment. The optimal process parameters are recommended at an insulation temperature in the range of 595–600 °C and a squeeze pressure of 100 MPa. Under the optimal process parameters, scroll casting was completely filled, and there was no obvious shrinkage defect observed inside. Its microstructure is composed of fine and spherical grains.


2011 ◽  
Vol 121-126 ◽  
pp. 254-258
Author(s):  
Bai Yang Lou ◽  
Fang Li Liu ◽  
Kang Chun Luo

The numerical simulations of mold filling and solidification process for the A380 aluminum alloy were done by the supposed mathematical model. The casting defects in the process of mold filling and solidification were predicted by the result of the casting simulation. The casting defects of simulation are well compared with the practice. Some measures presented were improved for the existing technological process.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2866
Author(s):  
Jintong Liu ◽  
Anan Zhao ◽  
Piao Wan ◽  
Huiyue Dong ◽  
Yunbo Bi

Interlayer burrs formation during drilling of stacked plates is a common problem in the field of aircraft assembly. Burrs elimination requires extra deburring operations which is time-consuming and costly. An effective way to inhibit interlayer burrs is to reduce the interlayer gap by preloading clamping force. In this paper, based on the theory of plates and shells, a mathematical model of interlayer gap with bidirectional clamping forces was established. The relationship between the upper and lower clamping forces was investigated when the interlayer gap reaches zero. The optimization of the bidirectional clamping forces was performed to reduce the degree and non-uniformity of the deflections of the stacked plates. Then, the finite element simulation was conducted to verify the mathematical model. Finally, drilling experiments were carried out on 2024-T3 aluminum alloy stacked plates based on the dual-machine-based automatic drilling and riveting system. The experimental results show that the optimized bidirectional clamping forces can significantly reduce the burr heights. The work in this paper enables us to understand the effect of bidirectional clamping forces on the interlayer gap and paves the way for the practical application.


Sign in / Sign up

Export Citation Format

Share Document