Effect of Predeformation and Heat Treatment Conditions in the Modified SIMA Process on Microstructural of a New Developed Super High-Strength Aluminium Alloy Modified by Al-8B Grain Refiner

2011 ◽  
pp. 843-853 ◽  
Author(s):  
M. Alipour ◽  
M. Emamy ◽  
J. Rasizadeh ◽  
M. Azarbarmas ◽  
M. Karamouz
Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 647 ◽  
Author(s):  
Bingrong Zhang ◽  
Lingkun Zhang ◽  
Zhiming Wang ◽  
Anjiang Gao

In order to obtain high-strength and high-ductility Al–Si–Cu–Mg alloys, the present research is focused on optimizing the composition of soluble phases, the structure and morphology of insoluble phases, and artificial ageing processes. The results show that the best matches, 0.4 wt% Mg and 1.2 wt% Cu in the Al–9Si alloy, avoided the toxic effect of the blocky Al2Cu on the mechanical properties of the alloy. The addition of 0.6 wt% Zn modified the morphology of eutectic Si from coarse particles to fine fibrous particles and the texture of Fe-rich phases from acicular β-Fe to blocky π-Fe in the Al–9Si–1.2Cu–0.4Mg-based alloy. With the optimization of the heat treatment parameters, the spherical eutectic Si and the fully fused β-Fe dramatically improved the ultimate tensile strength and elongation to fracture. Compared with the Al–9Si–1.2Cu–0.4Mg-based alloy, the 0.6 wt% Zn modified alloy not only increased the ultimate tensile strength and elongation to fracture of peak ageing but also reduced the time of peak ageing. The following improved combination of higher tensile strength and higher elongation was achieved for 0.6 wt% Zn modified alloy by double-stage ageing: 100 °C × 3 h + 180 °C × 7 h, with mechanical properties of ultimate tensile strength (UTS) of ~371 MPa, yield strength (YS) of ~291 MPa, and elongation to fracture (E%) of ~5.6%.


2021 ◽  
Vol 410 ◽  
pp. 197-202
Author(s):  
Pavel P. Poleckov ◽  
Olga A. Nikitenko ◽  
Alla S. Kuznetsova

This study considers the influence of various heat treatment conditions on the change of steel microstructure parameters, mechanical properties and cold resistance at a temperature of-60 °C. The common behavior of these properties is considered depending on the heating temperature used for quenching and subsequent tempering. Based on the obtained results, heat treatment conditions are proposed that provide a combination of a guaranteed yield point σ0.2 ≥600 N/mm2 with a low-temperature impact toughness KCV-60 ≥50 J/cm2 and plasticity δ5 ≥17%. The obtained research results are intended for industrial use at the mill "5000" site of MMK PJSC.


2019 ◽  
Vol 130 ◽  
pp. 01023
Author(s):  
Pritamara Wahyuningtyas ◽  
Anne Zulfia Syahrial ◽  
Wahyuaji Narottama Putra ◽  
Budi Wahyu Utomo

A study of ADC12 (Al-Si aluminium alloy) composite is conducted to obtain a more sustainable material with enhanced properties for automotive industry purpose, such as train's brake shoe and bearing application. For those kind of utilization, material with durability, good elastic modulus, thermal stability, wear resistance, and high strength properties is needed due to its exposure to high temperature and heavy continuous application. ADC 12 acts as the matrix, reinforced with 3 vf% micro-SiC with 5 wt% Mg wetting agent was fabricated by the stir casting method. The addition of 0.18 wt% Sr and 0.15 wt% TiB were expected to finer the grain morphology of the silicone eutectic phase and to acts as the grain refiner, respectively. Furthermore, T6 heat treatment was applied with aging temperature 150 °C, 170 °C, 190 °C, 210 °C, and 230 °C, following the prior 1 h 490 °C solution treatment. The results obtained in this work showed enhancement in tensile strength with the value of 213 MPa, hardness value 75 HRB, and wear resistance. These values increase up to 115 MPa for the UTS and 38 HRB for the hardness value, as the impact of the refined grains from both modifiers and heat treatment.


2006 ◽  
Vol 15-17 ◽  
pp. 531-536 ◽  
Author(s):  
W. Xu ◽  
D. San Martin ◽  
Pedro E.J. Rivera-Díaz-del-Castillo ◽  
Sybrand van der Zwaag

High molybdenum high strength stainless steels can contain the so-called Chi phase (Fe36Cr12Mo10). The presence of this phase, which normally occurs at grain boundaries, depletes the chromium content leading to intergranular corrosion. This may cause alloy embrittlement during long term use. The presence of such phase has proven to be highly sensitive to alloy processing parameters such as the cooling rate after a final heat treatment. The present work provides a model to quantify the effects of processing parameters aimed at controlling the Chi phase. The model is based on nucleation and growth classical theories involving capillarity effects for the early stages; it is applied to a range of heat treatment conditions and compared to experimental results.


2019 ◽  
Vol 969 ◽  
pp. 205-210 ◽  
Author(s):  
D. Venkateswarlu ◽  
Muralimohan Cheepu ◽  
P. Nageswara Rao ◽  
S. Senthil Kumaran ◽  
Narayanan Srinivasan

In the present study, aluminum alloy 2219 of two different heat treatment states were selected and welded using the friction stir welding process to evaluate the effect substrate on the joint properties. The microstructural observations have exhibited the difference in their characteristics between two heat treatment conditions of 2219-O and T6 conditions. The tensile strength of the AA2219-T6 joints much higher than the AA2219-O joints. Consequently, the microhardness distribution across the different zones varying with two different heat treated conditions. The failure locations and fracture surface features are revealed the significant differences among these two heat treated conditions with the change in their failure location and the fracture morphologies. The optimal welding conditions were analyzed to determine the high strength of the welds with excellent metallurgical properties of the welds.


Sign in / Sign up

Export Citation Format

Share Document