scholarly journals Consecutive and Selective Double Methylene Insertion of Lithium Carbenoids to Isothiocyanates: A Direct Assembly of Four‐membered Sulfur‐Containing Cycles

Author(s):  
Raffaele Senatore ◽  
Monika Malik ◽  
Thierry Langer ◽  
Wolfgang Holzer ◽  
Vittorio Pace
Author(s):  
E.M. Kuhn ◽  
K.D. Marenus ◽  
M. Beer

Fibers composed of different types of collagen cannot be differentiated by conventional electron microscopic stains. We are developing staining procedures aimed at identifying collagen fibers of different types.Pt(Gly-L-Met)Cl binds specifically to sulfur-containing amino acids. Different collagens have methionine (met) residues at somewhat different positions. A good correspondence has been reported between known met positions and Pt(GLM) bands in rat Type I SLS (collagen aggregates in which molecules lie adjacent to each other in exact register). We have confirmed this relationship in Type III collagen SLS (Fig. 1).


2020 ◽  
Vol 48 (2) ◽  
pp. 613-620
Author(s):  
Clara Ortegón Salas ◽  
Katharina Schneider ◽  
Christopher Horst Lillig ◽  
Manuela Gellert

Processing of and responding to various signals is an essential cellular function that influences survival, homeostasis, development, and cell death. Extra- or intracellular signals are perceived via specific receptors and transduced in a particular signalling pathway that results in a precise response. Reversible post-translational redox modifications of cysteinyl and methionyl residues have been characterised in countless signal transduction pathways. Due to the low reactivity of most sulfur-containing amino acid side chains with hydrogen peroxide, for instance, and also to ensure specificity, redox signalling requires catalysis, just like phosphorylation signalling requires kinases and phosphatases. While reducing enzymes of both cysteinyl- and methionyl-derivates have been characterised in great detail before, the discovery and characterisation of MICAL proteins evinced the first examples of specific oxidases in signal transduction. This article provides an overview of the functions of MICAL proteins in the redox regulation of cellular functions.


2003 ◽  
Vol 766 ◽  
Author(s):  
A. Sekiguchi ◽  
J. Koike ◽  
K. Ueoka ◽  
J. Ye ◽  
H. Okamura ◽  
...  

AbstractAdhesion strength in sputter-deposited Cu thin films on various types of barrier layers was investigated by scratch test. The barrier layers were Ta1-xNx with varied nitrogen concentration of 0, 0.2, 0.3, and 0.5. Microstructure observation by TEM indicated that each layer consists of mixed phases of β;-Ta, bcc-TaN0.1, hexagonal-TaN, and fcc-TaN, depending on the nitrogen concentration. A sulfur- containing amorphous phase was also present discontinuously at the Cu/barrier interfaces in all samples. Scratch test showed that delamination occurred at the Cu/barrier interface and that the overall adhesion strength increased with increasing the nitrogen concentration. A good correlation was found between the measured adhesion strength and the composing phases in the barrier layer.


2019 ◽  
Author(s):  
Zacharias Kinney ◽  
Viraj Kirinda ◽  
Scott Hartley

<p>Higher-order structure in abiotic foldamer systems represents an important but largely unrealized goal. As one approach to this challenge, covalent assembly can be used to assemble macrocycles with foldamer subunits in well-defined spatial relationships. Such systems have previously been shown to exhibit self-sorting, new folding motifs, and dynamic stereoisomerism, yet there remain important questions about the interplay between folding and macrocyclization and the effect of structural confinement on folding behavior. Here, we explore the dynamic covalent assembly of extended <i>ortho</i>-phenylenes (hexamer and decamer) with rod-shaped linkers. Characteristic <sup>1</sup>H chemical shift differences between cyclic and acyclic systems can be compared with computational conformer libraries to determine the folding states of the macrocycles. We show that the bite angle provides a measure of the fit of an <i>o</i>-phenylene conformer within a shape-persistent macrocycle, affecting both assembly and ultimate folding behavior. For the <i>o</i>-phenylene hexamer, the bite angle and conformer stability work synergistically to direct assembly toward triangular [3+3] macrocycles of well-folded oligomers. For the decamer, the energetic accessibility of conformers with small bite angles allows [2+2] macrocycles to be formed as the predominant species. In these systems, the <i>o</i>-phenylenes are forced into unusual folding states, preferentially adopting a backbone geometry with distinct helical blocks of opposite handedness. The results show that simple geometric restrictions can be used to direct foldamers toward increasingly complex geometries.</p>


2019 ◽  
Author(s):  
Zacharias Kinney ◽  
Viraj Kirinda ◽  
Scott Hartley

<p>Higher-order structure in abiotic foldamer systems represents an important but largely unrealized goal. As one approach to this challenge, covalent assembly can be used to assemble macrocycles with foldamer subunits in well-defined spatial relationships. Such systems have previously been shown to exhibit self-sorting, new folding motifs, and dynamic stereoisomerism, yet there remain important questions about the interplay between folding and macrocyclization and the effect of structural confinement on folding behavior. Here, we explore the dynamic covalent assembly of extended <i>ortho</i>-phenylenes (hexamer and decamer) with rod-shaped linkers. Characteristic <sup>1</sup>H chemical shift differences between cyclic and acyclic systems can be compared with computational conformer libraries to determine the folding states of the macrocycles. We show that the bite angle provides a measure of the fit of an <i>o</i>-phenylene conformer within a shape-persistent macrocycle, affecting both assembly and ultimate folding behavior. For the <i>o</i>-phenylene hexamer, the bite angle and conformer stability work synergistically to direct assembly toward triangular [3+3] macrocycles of well-folded oligomers. For the decamer, the energetic accessibility of conformers with small bite angles allows [2+2] macrocycles to be formed as the predominant species. In these systems, the <i>o</i>-phenylenes are forced into unusual folding states, preferentially adopting a backbone geometry with distinct helical blocks of opposite handedness. The results show that simple geometric restrictions can be used to direct foldamers toward increasingly complex geometries.</p>


2019 ◽  
Author(s):  
Shengtao Ding

<p>One facile and efficient strategy for the hydrosilylation of steric 1,1-disubstituted terminal alkenes is demonstrated. Investigations on substrate scope and control experiments revealed the necessity of thioether in promoting this process under a simple iridium catalysis system. This convenient and feasible method is expected to be useful in the synthesis of sulfur-containing organosilicon polymers with different side-chains.</p><p><br></p>


Alloy Digest ◽  
1994 ◽  
Vol 43 (7) ◽  

Abstract Carlson Alloy C601 is characterized by high tensile, yield and creep-rupture strengths for high temperature service. The alloy is not embrittled by extended exposure to high temperatures and has excellent resistance to stress-corrosion cracking, to carburizing, nitriding and sulfur containing environments. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on forming, heat treating, machining, and joining. Filing Code: Ni-458. Producer or source: G.O. Carlson Inc.


Sign in / Sign up

Export Citation Format

Share Document