Improving the Robustness and Stability of Partial Least Squares Regression for Near-infrared Spectral Analysis

2009 ◽  
Vol 27 (7) ◽  
pp. 1328-1332 ◽  
Author(s):  
Xueguang SHAO ◽  
Da CHEN ◽  
Heng XU ◽  
Zhichao LIU ◽  
Wensheng CAI
2019 ◽  
Vol 28 (3) ◽  
pp. e015
Author(s):  
José-Henrique Camargo Pace ◽  
João-Vicente De Figueiredo Latorraca ◽  
Paulo-Ricardo Gherardi Hein ◽  
Alexandre Monteiro de Carvalho ◽  
Jonnys Paz Castro ◽  
...  

Aim of study: Fast and reliable wood identification solutions are needed to combat the illegal trade in native woods. In this study, multivariate analysis was applied in near-infrared (NIR) spectra to identify wood of the Atlantic Forest species.Area of study: Planted forests located in the Vale Natural Reserve in the county of Sooretama (19 ° 01'09 "S 40 ° 05'51" W), Espírito Santo, Brazil.Material and methods: Three trees of 12 native species from homogeneous plantations. The principal component analysis (PCA) and partial least squares regression by discriminant function (PLS-DA) were performed on the woods spectral signatures.Main results: The PCA scores allowed to agroup some wood species from their spectra. The percentage of correct classifications generated by the PLS-DA model was 93.2%. In the independent validation, the PLS-DA model correctly classified 91.3% of the samples.Research highlights: The PLS-DA models were adequate to classify and identify the twelve native wood species based on the respective NIR spectra, showing good ability to classify independent native wood samples.Keywords: native woods; NIR spectra; principal components; partial least squares regression.


2018 ◽  
Vol 11 (7) ◽  
pp. e201700365 ◽  
Author(s):  
Raphael Henn ◽  
Christian G. Kirchler ◽  
Zora L. Schirmeister ◽  
Andreas Roth ◽  
Werner Mäntele ◽  
...  

2001 ◽  
Vol 9 (2) ◽  
pp. 133-139 ◽  
Author(s):  
L.G. Thygesen ◽  
S.B. Engelsen ◽  
M.H. Madsen ◽  
O.B. Sørensen

A set of 97 potato starch samples with a phosphate content corresponding to a phosphorus content between 0.029 and 0.11 g per 100 g dry matter was analysed using a Rapid Visco Analyzer (RVA) and near infrared (NIR) spectroscopy, (700–2498 nm). NIR-based prediction of phosphate content was possible with a root mean square error of cross-validation ( RMSECV) of 0.006% using PLSR (partial least squares regression). However, the NIR/PLSR model relied on weak spectral signals, and was highly sensitive to sample preparation. The best prediction of phosphate content from the RVA viscograms was a linear regression model based on the RVA variable Breakdown, which gave a RMSECV of 0.008%. NIR/PLSR prediction of the RVA variables Peak viscosity and Breakdown was successful, probably because they were highly related to phosphate content in the present data. Prediction of the other RVA variables from NIR/PLSR was mediocre (Through, Final Viscosity) or not possible (Setback, Peak time, Pasting temperature).


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3855 ◽  
Author(s):  
Lin Bai ◽  
Cuizhen Wang ◽  
Shuying Zang ◽  
Changshan Wu ◽  
Jinming Luo ◽  
...  

In arid and semi-arid regions, identifying and monitoring of soil alkalinity and salinity are in urgently need for preventing land degradation and maintaining ecological balances. In this study, physicochemical, statistical, and spectral analysis revealed that potential of hydrogen (pH) and electrical conductivity (EC) characterized the saline-alkali soils and were sensitive to the visible and near infrared (VIS-NIR) wavelengths. On the basis of soil pH, EC, and spectral data, the partial least squares regression (PLSR) models for estimating soil alkalinity and salinity were constructed. The R2 values for soil pH and EC models were 0.77 and 0.48, and the root mean square errors (RMSEs) were 0.95 and 17.92 dS/m, respectively. The ratios of performance to inter-quartile distance (RPIQ) for the soil pH and EC models were 3.84 and 0.14, respectively, indicating that the soil pH model performed well but the soil EC model was not considerably reliable. With the validation dataset, the RMSEs of the two models were 1.06 and 18.92 dS/m. With the PLSR models applied to hyperspectral data acquired from the hyperspectral imager (HSI) onboard the HJ-1A satellite (launched in 2008 by China), the soil alkalinity and salinity distributions were mapped in the study area, and were validated with RMSEs of 1.09 and 17.30 dS/m, respectively. These findings revealed that the hyperspectral images in the VIS-NIR wavelengths had the potential to map soil alkalinity and salinity in the Songnen Plain, China.


2020 ◽  
Vol 38 (No. 2) ◽  
pp. 131-136
Author(s):  
Wojciech Poćwiardowski ◽  
Joanna Szulc ◽  
Grażyna Gozdecka

The aim of the study was to elaborate a universal calibration for the near infrared (NIR) spectrophotometer to determine the moisture of various kinds of vegetable seeds. The research was conducted on the seeds of 5 types of vegetables – carrot, parsley, lettuce, radish and beetroot. For the spectra correlation with moisture values, the method of partial least squares regression (PLS) was used. The resulting qualitative indicators of a calibration model (R = 0.9968, Q = 0.8904) confirmed an excellent fit of the obtained calibration to the experimental data. As a result of the study, the possibilities of creating a calibration model for NIR spectrophotometer for non-destructive moisture analysis of various kinds of vegetable seeds was confirmed.<br /><br />


Sign in / Sign up

Export Citation Format

Share Document