mean square errors
Recently Published Documents


TOTAL DOCUMENTS

1067
(FIVE YEARS 561)

H-INDEX

42
(FIVE YEARS 10)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yirong Li ◽  
Yiwen Zheng ◽  
David A. Ratkowsky ◽  
Hailin Wei ◽  
Peijian Shi

Leaf shape is an important leaf trait, with ovate leaves common in many floras. Recently, a new leaf shape model (referred to as the MLRF equation) derived from temperature-dependent bacterial growth was proposed and demonstrated to be valid in describing leaf boundaries of many species with ovate leaf shape. The MLRF model’s parameters can provide valuable information of leaf shape, including the ratio of lamina width to length and the lamina centroid location on the lamina length axis. However, the model wasn’t tested on a large sample of a single species, thereby limiting its overall evaluation for describing leaf boundaries, for evaluating lamina bilateral asymmetry and for calculating lamina centroid location. In this study, we further test the model using data from two Lauraceae species, Cinnamomum camphora and Machilus leptophylla, with >290 leaves for each species. The equation was found to be credible for describing those shapes, with all adjusted root-mean-square errors (RMSE) smaller than 0.05, indicating that the mean absolute deviation is smaller than 5% of the radius of an assumed circle whose area equals lamina area. It was also found that the larger the extent of lamina asymmetry, the larger the adjusted RMSE, with approximately 50% of unexplained variation by the model accounted for by the lamina asymmetry, implying that this model can help to quantify the leaf bilateral asymmetry in future studies. In addition, there was a significant difference between the two species in their centroid ratio, i.e., the distance from leaf petiole to the point on the lamina length axis associated with leaf maximum width to the leaf maximum length. It was found that a higher centroid ratio does not necessarily lead to a greater investment of mass to leaf petiole relative to lamina, which might depend on the petiole pattern.


MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 129-138
Author(s):  
Mostafa Abotaleb ◽  
Tatiana Makarovskikh ◽  
Aynur Yonar ◽  
Amr Badr ◽  
Pradeep Mishra ◽  
...  

Wind energy is one of the most important renewable energy sources in the world. Hence, the prediction of wind speed is a highly significant subject with respect to both protecting the environment and economic development. England is among the countries with an increasing interest in the potential for wind energy systems. In this study, various time series models, including BATS, TBATS, Holt’s Linear Trend, and ARIMA models were applied for wind speed prediction in England, and their performance was compared. The available wind speed data between 1994-07-07 and 2015-12-31 were divided into two parts: training data that is used to build up the models and testing data that is used to measure the validity of a model forecast. The results of the testing data indicate that the BATS and ARIMA outperform the other time series models according to the root mean square errors.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 520
Author(s):  
Guanghui Xue ◽  
Jinbo Wei ◽  
Ruixue Li ◽  
Jian Cheng

Simultaneous localization and mapping (SLAM) is one of the key technologies for coal mine underground operation vehicles to build complex environment maps and positioning and to realize unmanned and autonomous operation. Many domestic and foreign scholars have studied many SLAM algorithms, but the mapping accuracy and real-time performance still need to be further improved. This paper presents a SLAM algorithm integrating scan context and Light weight and Ground-Optimized LiDAR Odometry and Mapping (LeGO-LOAM), LeGO-LOAM-SC. The algorithm uses the global descriptor extracted by scan context for loop detection, adds pose constraints to Georgia Tech Smoothing and Mapping (GTSAM) by Iterative Closest Points (ICP) for graph optimization, and constructs point cloud map and an output estimated pose of the mobile vehicle. The test with KITTI dataset 00 sequence data and the actual test in 2-storey underground parking lots are carried out. The results show that the proposed improved algorithm makes up for the drift of the point cloud map, has a higher mapping accuracy, a better real-time performance, a lower resource occupancy, a higher coincidence between trajectory estimation and real trajectory, smoother loop, and 6% reduction in CPU occupancy, the mean square errors of absolute trajectory error (ATE) and relative pose error (RPE) are reduced by 55.7% and 50.3% respectively; the translation and rotation accuracy are improved by about 5%, and the time consumption is reduced by 2~4%. Accurate map construction and low drift pose estimation can be performed.


2022 ◽  
Vol 14 (2) ◽  
pp. 277
Author(s):  
Ping Zhou ◽  
Zhe Zhao ◽  
Guangyuan Wei ◽  
Hong-Yuan Huo

Our simulated lunar regolith spectra database, based on the Hapke AMSA radiative transfer model (RTM), is a large supplement to the limited number of lunar spectra data. By analyzing the multiple solutions and applicable scopes of the Hapke model by means of Newton interpolation and the least square optimization method, an improved method was found for the simulation of spectra, but it remained challenging to use to invert mineral abundance. Then, we simulated the spectra, mineral abundance, particle size and maturity of 57 mare and highland samples of the Lunar Soil Characterization Consortium (LSCC) in size groups of 10 µm, 10–20 µm and 20–45 µm. The simulated and measured spectra fit well with each other, with correlation coefficients greater than 0.99 and root mean square errors at a magnitude of 10-3. The parameters of mineral abundance, particle size and maturity are highly consistent with the measured values. Having confirmed the reliability of our simulation method, we analyzed the mechanism, reliability and applicability of the “spectral characteristic angle parameter” proposed by Lucey using the simulated spectral data of lunar regolith. Lucey’s method is only suitable for macro analysis of the entire moon, and the error is large when it is used for areas with high abundance of forsterite or ilmenite. In the spectral simulation of lunar regolith, olivine was subdivided into forsterite and fayalite, and the two end-members were mixed to approximately estimate the effect of the chemical composition of olivine on the spectra, which has been confirmed to be feasible.


2022 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Zhang ChunLing ◽  
Zhang Meng-Li ◽  
Wang Zhen-Feng ◽  
Hu Song ◽  
Wang Dan-Yang ◽  
...  

Argo has become an important constituent of the global ocean observation system. However, due to the lack of sea surface measurements from most Argo profiles, the application of Argo data is still limited. In this study, a thermocline model was constructed based on three key thermocline parameters, i.e, thermocline upper depth, the thermocline bottom depth, and thermocline temperature gradient. Following the model, we estimated the sea surface temperature of Argo profiles by providing the relationship between sea surface and subsurface temperature. We tested the effectiveness of our proposed model using statistical analysis and by comparing the sea surface temperature with the results obtained from traditional methods and in situ observations in the Pacific Ocean. The root mean square errors of results obtained from thermocline model were found to be significantly reduced compared to the extrapolation results and satellite retrieved temperature results. The correlation coefficient between the estimation result and in situ observation was 0.967. Argo surface temperature, estimated by the thermocline model, has been theoretically proved to be reliable. Thus, our model generates theoretically feasible data present the mesoscale phenomenon in more detail. Overall, this study compensates for the lack surface observation of Argo, and provides a new tool to establish complete Argo data sets.


2022 ◽  
Vol 19 (1) ◽  
pp. 2-24
Author(s):  
Mohamed Abd Elhamed Sabry ◽  
Hiba Zeyada Muhammed ◽  
Mostafa Shaaban ◽  
Abd El Hady Nabih

In this paper, the likelihood function for parameter estimation based on double ranked set sampling (DRSS) schemes is introduced. The proposed likelihood function is used for the estimation of the Weibull distribution parameters. The maximum likelihood estimators (MLEs) are investigated and compared to the corresponding ones based on simple random sampling (SRS) and ranked set sampling (RSS) schemes. A Monte Carlo simulation is conducted and the absolute relative biases, mean square errors, and efficiencies are compared for the different schemes. It is found that, the MLEs based on DRSS is more efficient than MLE using SRS and RSS for estimating the two parameters of the Weibull distribution (WD).


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 62
Author(s):  
Zhu Sun ◽  
Xiangyu Guo ◽  
Yang Xu ◽  
Songchao Zhang ◽  
Xiaohui Cheng ◽  
...  

To ensure the hybrid oilseed rape (OSR, Brassica napus) seed production, two important things are necessary, the stamen sterility on the female OSR plants and the effective pollen spread onto the pistil from the OSR male plants to the OSR female plants. The unmanned agricultural aerial system (UAAS) has developed rapidly in China. It has been used on supplementary pollination and aerial spraying during the hybrid OSR seed production. This study developed a new method to rapidly recognize the male OSR plants and extract the row center line for supporting the UAAS navigation. A male OSR plant recognition model was constructed based on the convolutional neural network (CNN). The sequence images of male OSR plants were extracted, the feature regions and points were obtained from the images through morphological and boundary process methods and horizontal segmentation, respectively. The male OSR plant image recognition accuracies of different CNN structures and segmentation sizes were discussed. The male OSR plant row center lines were fitted using the least-squares method (LSM) and Hough transform. The results showed that the segmentation algorithm could segment the male OSR plants from the complex background. The highest average recognition accuracy was 93.54%, and the minimum loss function value was 0.2059 with three convolutional layers, one fully connected layer, and a segmentation size of 40 pix × 40 pix. The LSM is better for center line fitting. The average recognition model accuracies of original input images were 98% and 94%, and the average root mean square errors (RMSE) of angle were 3.22° and 1.36° under cloudy day and sunny day lighting conditions, respectively. The results demonstrate the potential of using digital imaging technology to recognize the male OSR plant row for UAAS visual navigation on the applications of hybrid OSR supplementary pollination and aerial spraying, which would be a meaningful supplement in precision agriculture.


Silva Fennica ◽  
2022 ◽  
Vol 56 (1) ◽  
Author(s):  
Lennart Noordermeer ◽  
Erik Næsset ◽  
Terje Gobakken

Newly developed positioning systems in cut-to-length harvesters enable georeferencing of individual trees with submeter accuracy. Together with detailed tree measurements recorded during processing of the tree, georeferenced harvester data are emerging as a valuable tool for forest inventory. Previous studies have shown that harvester data can be linked to airborne laser scanner (ALS) data to estimate a range of forest attributes. However, there is little empirical evidence of the benefits of improved positioning accuracy of harvester data. The two objectives of this study were to (1) assess the accuracy of timber volume estimation using harvester data and ALS data acquired with different scanners over multiple years and (2) assess how harvester positioning errors affect merchantable timber volume predicted and estimated from ALS data. We used harvester data from 33 commercial logging operations, comprising 93 731 harvested stems georeferenced with sub-meter accuracy, as plot-level training data in an enhanced area-based inventory approach. By randomly altering the tree positions in Monte Carlo simulations, we assessed how prediction and estimation errors were influenced by different combinations of simulated positioning errors and grid cell sizes. We simulated positioning errors of 1, 2, …, 15 m and used grid cells of 100, 200, 300 and 400 m. Values of root mean square errors obtained for cell-level predictions of timber volume differed significantly for the different grid cell sizes. The use of larger grid cells resulted in a greater accuracy of timber volume predictions, which were also less affected by positioning errors. Accuracies of timber volume estimates at logging operation level decreased significantly with increasing levels of positioning error. The results highlight the benefit of accurate positioning of harvester data in forest inventory applications. Further, the results indicate that when estimating timber volume from ALS data and inaccurately positioned harvester data, larger grid cells are beneficial.2


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261683
Author(s):  
Xuemei Ma ◽  
Qiang Liu ◽  
Zhidong Zhang ◽  
Zewen Zhang ◽  
Zeyu Zhou ◽  
...  

Accurately predicting the crown photosynthesis of trees is necessary for better understanding the C circle in terrestrial ecosystem. However, modeling crown for individual tree is still challenging with the complex crown structure and changeable environmental conditions. This study was conducted to explore model in modeling the photosynthesis light response curve of the tree crown of young Larix principis-rupprechtii Mayr. Plantation. The rectangular hyperbolic model (RHM), non-rectangular hyperbolic model (NRHM), exponential model (EM) and modified rectangular hyperbolic model (MRHM) were used to model the photosynthetic light response curves. The fitting accuracy of these models was tested by comparing determinants coefficients (R2), mean square errors (MSE) and Akaike information criterion (AIC). The results showed that the mean value of R2 of MRHM (R2 = 0.9687) was the highest, whereas MSE value (MSE = 0.0748) and AIC value (AIC = -39.21) were the lowest. The order of fitting accuracy of the four models for Pn-PAR response curve was as follows: MRHM > EM > NRHM > RHM. In addition, the light saturation point (LSP) obtained by MRHM was slightly lower than the observed values, whereas the maximum net photosynthetic rates (Pmax) modeled by the four models were close to the measured values. Therefore, MRHM was superior to other three models in describing the photosynthetic response curve, the accurate values were that the quantum efficiency (α), maximum net photosynthetic rate (Pmax), light saturation point (LSP), light compensation point (LCP) and respiration rate (Rd) were 0.06, 6.06 μmol·m-2s-1, 802.68 μmol·m-2s-1, 10.76 μmol·m-2s-1 and 0.60 μmol·m-2s-1. Moreover, the photosynthetic response parameters values among different layers were also significant. Our findings have critical implications for parameter calibration of photosynthetic models and thus robust prediction of photosynthetic response in forests.


2021 ◽  
Author(s):  
Kazuhiro Yamaguchi ◽  
Jihong Zhang

This study proposed efficient Gibbs sampling algorithms for variable selection in a latent regression model under a unidimensional two-parameter logistic item response theory model. Three types of shrinkage priors were employed to obtain shrinkage estimates: double-exponential (i.e., Laplace), horseshoe, and horseshoe+ priors. These shrinkage priors were compared to a uniform prior case in both simulation and real data analysis. The simulation study revealed that two types of horseshoe priors had a smaller root mean square errors and shorter 95% credible interval lengths than double-exponential or uniform priors. In addition, the horseshoe prior+ was slightly more stable than the horseshoe prior. The real data example successfully proved the utility of horseshoe and horseshoe+ priors in selecting effective predictive covariates for math achievement. In the final section, we discuss the benefits and limitations of the three types of Bayesian variable selection methods.


Sign in / Sign up

Export Citation Format

Share Document