ELECTRON MICROSCOPY OF PRIMARY CELL WALLS TREATED WITH PECTIC ENZYMES

1952 ◽  
Vol 39 (2) ◽  
pp. 132-133 ◽  
Author(s):  
R. K. S. Wood ◽  
A. H. Gold ◽  
T. E. Rawlins
Author(s):  
N.C. Lyon ◽  
W. C. Mueller

Schumacher and Halbsguth first demonstrated ectodesmata as pores or channels in the epidermal cell walls in haustoria of Cuscuta odorata L. by light microscopy in tissues fixed in a sublimate fixative (30% ethyl alcohol, 30 ml:glacial acetic acid, 10 ml: 65% nitric acid, 1 ml: 40% formaldehyde, 5 ml: oxalic acid, 2 g: mecuric chloride to saturation 2-3 g). Other workers have published electron micrographs of structures transversing the outer epidermal cell in thin sections of plant leaves that have been interpreted as ectodesmata. Such structures are evident following treatment with Hg++ or Ag+ salts and are only rarely observed by electron microscopy. If ectodesmata exist without such treatment, and are not artefacts, they would afford natural pathways of entry for applied foliar solutions and plant viruses.


Author(s):  
S. E. Keckler ◽  
D. M. Dabbs ◽  
N. Yao ◽  
I. A. Aksay

Cellular organic structures such as wood can be used as scaffolds for the synthesis of complex structures of organic/ceramic nanocomposites. The wood cell is a fiber-reinforced resin composite of cellulose fibers in a lignin matrix. A single cell wall, containing several layers of different fiber orientations and lignin content, is separated from its neighboring wall by the middle lamella, a lignin-rich region. In order to achieve total mineralization, deposition on and in the cell wall must be achieved. Geological fossilization of wood occurs as permineralization (filling the void spaces with mineral) and petrifaction (mineralizing the cell wall as the organic component decays) through infiltration of wood with inorganics after growth. Conversely, living plants can incorporate inorganics into their cells and in some cases into the cell walls during growth. In a recent study, we mimicked geological fossilization by infiltrating inorganic precursors into wood cells in order to enhance the properties of wood. In the current work, we use electron microscopy to examine the structure of silica formed in the cell walls after infiltration of tetraethoxysilane (TEOS).


1981 ◽  
Vol 59 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Robert A. Blanchette ◽  
John B. Sutherland ◽  
Don L. Crawford

The greenish-brown margin of discolored wood in three living silver maple trees, Acer saccharinum L., was examined by scanning electron microscopy and microbiological culture techniques. Micrographs of xylem vessels revealed filamentous structures; some of them appeared to be actinomycetous hyphae. Actinomycetes identified as Streptomyces parvullus Waksman & Gregory, S. sparsogenes Owen, Dietz & Camiener, and a third Streptomyces strain were isolated repeatedly from discolored wood of each tree. These isolates grew in liquid media in the presence of 0.1% (w/v) concentrations of several phenols. Although other phenols included in the test were not substantially degraded, p-hydroxybenzoic acid was utilized as a carbon source by S. parvullus. All three actinomycetes inhibited growth of selected wood-inhabiting fungi when paired on malt agar. When inoculated on sterilized sapwood and discolored wood from silver maple, the actinomycetes colonized vessel walls and occlusions, but were not observed to decay cell walls.


1968 ◽  
Vol 39 (3) ◽  
pp. 698-715 ◽  
Author(s):  
H. W. Israel ◽  
M. M. Salpeter ◽  
F. C. Steward

Cultured carrot explants, stimulated to grow rapidly in a medium containing coconut milk, were labeled with radioactive proline. After an initial period of absorption (8 hr for proline-3H; 24 hr for proline-14C) the tissue was allowed to grow for a further period of 6 days in a similar medium free from the radioactivity. Samples were prepared for electron microscopy and radioautography at the end of the absorption period and also after the further growth. The distribution of the products from the radioactive proline in the cells is shown by high-resolution radioautography and is rendered quantitative for the different regions of the cells. The results show that the combined label, which was present in the form of proline and the hydroxyproline derived from it, was all in the protoplasm, not in the cell walls. Any combined label that appeared to be over the cell walls is shown to be due to scatter from adjacent cytoplasmic sites. Initially the radioactivity was concentrated in nuclei, even more so in nucleoli, but it subsequently appeared throughout the ground cytoplasm and was also concentrated in the plastids. The significance of these observations for the general concept of a plant cell wall protein and for the special problem of growth induction in otherwise quiescent cells is discussed.


1996 ◽  
Vol 41 (6) ◽  
pp. 1507-1510 ◽  
Author(s):  
Thi Bach Tuyet Lam ◽  
Kenji Iiyama ◽  
Bruce A. Stone

IAWA Journal ◽  
2005 ◽  
Vol 26 (2) ◽  
pp. 161-174 ◽  
Author(s):  
Hisashi Abe ◽  
Ryo Funada

We examined the orientation of cellulose microfibrils (Mfs) in the cell walls of tracheids in some conifer species by field emission-scanning electron microscopy (FE-SEM) and developed a model on the basis of our observations. Mfs depositing on the primary walls in differentiating tracheids were not well-ordered. The predominant orientation of the Mfs changed from longitudinal to transverse, as the differentiation of tracheids proceeded. The first Mfs to be deposited in the outer layer of the secondary wall (S1 layer) were arranged as an S-helix. Then the orientation of Mfs changed gradually, with rotation in the clockwise direction as viewed from the lumen side of tracheids, from the outermost to the innermost S1 layer. Mfs in the middle layer of the secondary wall (S2 layer) were oriented in a steep Z-helix with a deviation of less than 15° within the layer. The orientation of Mfs in the inner layer of the secondary wall (S3 layer) changed, with rotation in a counterclockwise direction as viewed from the lumen side, from the outermost to the innermost S3 layer. The angle of orientation of Mfs that were deposited on the innermost S3 layer varied among tracheids from 40° in a Z-helix to 20° in an S-helix.


1987 ◽  
Vol 165 (1) ◽  
pp. 53-68 ◽  
Author(s):  
Helen D. Chapman ◽  
Victor J. Morris ◽  
Robert R. Selvendran ◽  
Malcolm A. O'Neill

1994 ◽  
Vol 72 (10) ◽  
pp. 1489-1495 ◽  
Author(s):  
X. XuHan ◽  
A. A. M. Van Lammeren

Microtubular cytoskeletons in nuclear, alveolar, and cellular endosperm of bean (Phaseolus vulgaris) were analyzed immunocytochemically and by electron microscopy to reveal their function during cellularization. Nuclear endosperm showed a fine network of microtubules between the wide-spaced nuclei observed towards the chalazal pole. Near the embryo, where nuclei were densely packed, bundles of microtubules radiated from nuclei. They were formed just before alveolus formation and functioned in spacing nuclei and in forming internuclear, phragmoplast-like structures that gave rise to nonmitosis-related cell plates. During alveolus formation cell plates extended and fused with other newly formed walls, thus forming the walls of alveoli. Growing wall edges of cell plates exhibited arrays of microtubules perpendicular to the plane of the wall, initially. When two growing walls were about to fuse, microtubules of both walls interacted, and because of the interaction of microtubules, the cell walls changed their position. When a growing wall was about to fuse with an already existing wall, such interactions between microtubules were not observed. It is therefore concluded that interactions of microtubules of fusing walls influence shape and position of walls. Thus microtubules control the dynamics of cell wall positioning and initial cell shaping. Key words: cell wall, cellularization, endosperm, microtubule, Phaseolus vulgaris.


2017 ◽  
pp. 66
Author(s):  
Aída Carrillo-Ocampo ◽  
E.M. Engleman

With methods of light microscopy, histochemical staining and scanning electron microscopy, it was found that the ovule in the seed of Tigridia pavonia (Iridaceae) is anatropous, bitegmic, and crassinucellate. During development, the exotegmen is crushed and the endotegmen persists with tannins in the lumens and in the walls, which also react positively for lignin. The exotesta contains tannins and its outer walls are convex, thickened, and cuticularized. The mesotesta has multiple layers, accumulates abundant lipids, and forms a bulge in the chalaza. The cell walls of the endotesta collapse and accumulate tannins. In the chalaza, a hypostasal cushion contains tannins in the lumens and in the walls, which also react positively for lignin. At the micropylar end of the seed there is an operculum which consists of: a) a slightly crushed exotegmen, b) an endotegmen with cuticular thickenings that are concentric with respect to the micropyle, c) hemispherical deposists of cutin on the anticlinal walls of the endotegmen, and c) a thin layer of endosperm that covers the radicle. During its cellular stage of development, the endosperm has conspicuous transfer walls at the chalazal end next to the nucella. The embryo is small and has a conical cotyledon.


1974 ◽  
Vol 117 (2) ◽  
pp. 900-903 ◽  
Author(s):  
John P. Robinson ◽  
Richard D. Robinson ◽  
John H. Hash

Sign in / Sign up

Export Citation Format

Share Document