Mineralization of dissolved organic carbon in mineral soil solution of two forest soils

2003 ◽  
Vol 166 (5) ◽  
pp. 585-593 ◽  
Author(s):  
David Schwesig ◽  
Karsten Kalbitz ◽  
Egbert Matzner
2009 ◽  
Vol 6 (12) ◽  
pp. 2743-2758 ◽  
Author(s):  
S. Sleutel ◽  
J. Vandenbruwane ◽  
A. De Schrijver ◽  
K. Wuyts ◽  
B. Moeskops ◽  
...  

Abstract. Numerous recent studies have indicated that dissolved organic carbon (DOC) and nitrogen (DON) play an important role in C and N cycling in natural ecosystems, and have shown that N deposition alters the concentrations and fluxes of dissolved organic substances and may increase leaching losses from forests. Our study was set up to accurately quantify concentrations and flux patterns of DOC, DON and dissolved inorganic nitrogen (DIN) in deciduous and coniferous forest in Flanders, Belgium, under historical high nitrogen deposition. We measured DOC, DON and DIN concentrations at two weekly intervals in a silver birch (SB) stand, a corsican pine (CP) stand and a pine stand with higher N deposition (CPN), and used the SWAP model (calibrated with PEST) for generating accurate water and matter fluxes. The input with precipitation was an important source of DON, but not for DOC. Release of DOC from the forest floor was minimally affected by forest type, but higher N deposition (CPN stand) caused an 82% increase of DOC release from the forest floor. Adsorption to mineral soil material rich in iron and/or aluminum oxyhydroxides was suggested to be the most important process removing DOC from the soil solution, responsible for substantial retention (67–84%) of DOC entering the mineral soil profile with forest floor leachate. Generally, DON was less reactive (i.e. less removal from the soil solution) than DOC, resulting in decreasing DOC/DON ratios with soil depth. We found increased DOC retention in the mineral soil as a result of higher N deposition (84 kg ha−1 yr−1 additional DOC retention in CPN compared to CP). Overall DON leaching losses were 2.2, 3.3 and 5.0 kg N yr−1 for SB, CP and CPN, respectively, contributing between 9–28% to total dissolved N (TDN) leaching. The relative contribution to TDN leaching from DON loss from SB and CP was mainly determined by (large) differences in DIN leaching. The large TDN leaching losses are alarming, especially in the CPN stand that was N saturated.


2009 ◽  
Vol 6 (4) ◽  
pp. 7133-7173 ◽  
Author(s):  
S. Sleutel ◽  
J. Vandenbruwane ◽  
A. De Schrijver ◽  
K. Wuyts ◽  
B. Moeskops ◽  
...  

Abstract. Numerous recent studies have indicated that dissolved organic carbon (DOC) and nitrogen (DON) play an important role in C and N cycling in natural ecosystems, and have shown that N deposition alters the concentrations and fluxes of dissolved organic substances and may increase leaching losses from forests. Our study was set up to accurately quantify concentrations and flux patterns of DOC, DON and dissolved inorganic nitrogen (DIN) in deciduous and coniferous forest in Flanders under historical high nitrogen deposition. We measured DOC, DON and DIN concentrations at two weekly intervals in a silver birch (SB) stand, a corsican pine (CP) stand and a pine stand with higher N deposition (CPN), and used the SWAP model (calibrated with PEST) for generating accurate water and matter fluxes. The input with precipitation was an important source of DON, but not for DOC. Release of DOC from the forest floor was minimally affected by forest type, but higher N deposition (CPN stand) caused an 82% increase of DOC release from the forest floor. Adsorption to mineral soil material rich in iron and/or aluminum oxyhydroxides was suggested to be the most important process removing DOC from the soil solution, responsible for substantial retention (67–84%) of DOC entering the mineral soil profile with forest floor leachate. Generally, DON was less reactive (i.e. less removal from the soil solution) than DOC, resulting in decreasing DOC/DON ratios with soil depth. We found increased DOC retention in the mineral soil as a result of higher N deposition (84 kg N ha−1 yr−1 additional DOC retention in CPN compared to CP). Overall DON leaching losses were 2.2, 3.3 and 5.0 kg N ha−1 yr−1 for SB, CP and CPN, respectively, contributing between 9–28% to total dissolved N (TDN) leaching. DON loss from SB and CP was not much higher than from unpolluted forests, and its relative contribution to TDN leaching was mainly determined by (large) differences in DIN leaching. The large TDN leaching losses are alarming, especially in the CPN stand that was N saturated.


2013 ◽  
Vol 19 (1) ◽  
pp. 69-76
Author(s):  
Barbara Sapek

Abstract Studies on the effect of dissolved organic carbon (DOC) on the concentration of calcium and magnesium in soil water phase (ground water and soil solution) and on their uptake by plants are less numerous than those on nitrogen and phosphorus. This study was aimed at assessing the relationships between DOC in ground water and soil solution from under meadow on mineral soil and Ca and Mg concentrations and their uptake by plants. Presented studies were performed in the years 2004-2007 on long-term meadow experiments situated in Janki and Laszczki in Masovian Province. Increasing DOC concentrations in soil solutions increased Ca uptake and decreased Mg uptake by plants which was facilitated by decreasing soil acidity. A lack of significant effect of DOC concentration in ground water on Ca and Mg uptake but demonstrated opposite direction of this effect confirms the antagonism in calcium and magnesium behaviour in the environment. Obtained results indicate that mutual relationships among DOC, Ca and Mg in a ground water - soil solution - meadow vegetation system is complex and needs further studies.


2014 ◽  
Vol 7 (3) ◽  
pp. 867-881 ◽  
Author(s):  
H. Wu ◽  
C. Peng ◽  
T. R. Moore ◽  
D. Hua ◽  
C. Li ◽  
...  

Abstract. Even though dissolved organic carbon (DOC) is the most active carbon (C) cycling in soil organic carbon (SOC) pools, it receives little attention from the global C budget. DOC fluxes are critical to aquatic ecosystem inputs and contribute to the C balance of terrestrial ecosystems, but few ecosystem models have attempted to integrate DOC dynamics into terrestrial C cycling. This study introduces a new process-based model, TRIPLEX-DOC, that is capable of estimating DOC dynamics in forest soils by incorporating both ecological drivers and biogeochemical processes. TRIPLEX-DOC was developed from Forest-DNDC, a biogeochemical model simulating C and nitrogen (N) dynamics, coupled with a new DOC process module that predicts metabolic transformations, sorption/desorption, and DOC leaching in forest soils. The model was validated against field observations of DOC concentrations and fluxes at white pine forest stands located in southern Ontario, Canada. The model was able to simulate seasonal dynamics of DOC concentrations and the magnitudes observed within different soil layers, as well as DOC leaching in the age sequence of these forests. Additionally, TRIPLEX-DOC estimated the effect of forest harvesting on DOC leaching, with a significant increase following harvesting, illustrating that land use change is of critical importance in regulating DOC leaching in temperate forests as an important source of C input to aquatic ecosystems.


2017 ◽  
Vol 31 (3) ◽  
pp. 339-349 ◽  
Author(s):  
Wu Haohao ◽  
Xu Xingkai ◽  
Duan Cuntao ◽  
Li TuanSheng ◽  
Cheng Weiguo

AbstractPacked soil-core incubation experiments were done to study the effects of carbon (glucose, 6.4 g C m−2) and nitrogen (NH4Cl and KNO3, 4.5 g N m−2) addition on nitrous oxide (N2O) and carbon dioxide (CO2) fluxes during thawing of frozen soils under two forest stands (broadleaf and Korean pine mixed forest and white birch forest) with two moisture levels (55 and 80% water-filled pore space). With increasing soil moisture, the magnitude and longevity of the flush N2O flux from forest soils was enhanced during the early period of thawing, which was accompanied by great NO3−-N consumption. Without N addition, the glucose-induced cumulative CO2fluxes ranged from 9.61 to 13.49 g CO2-C m−2, which was larger than the dose of carbon added as glucose. The single addition of glucose increased microbial biomass carbon but slightly affected soil dissolved organic carbon pool. Thus, the extra carbon released upon addition of glucose can result from the decomposition of soil native organic carbon. The glucose-induced N2O and CO2fluxes were both significantly correlated to the glucose-induced total N and dissolved organic carbon pools and influenced singly and interactively by soil moisture and KNO3addition. The interactive effects of glucose and nitrogen inputs on N2O and CO2fluxes from forest soils after frost depended on N sources, soil moisture, and vegetation types.


2016 ◽  
Author(s):  
M. Camino-Serrano ◽  
E. Graf Pannatier ◽  
S. Vicca ◽  
S. Luyssaert ◽  
M. Jonard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document