nitrogen deposition
Recently Published Documents


TOTAL DOCUMENTS

1850
(FIVE YEARS 414)

H-INDEX

101
(FIVE YEARS 13)

2022 ◽  
Vol 209 ◽  
pp. 117958
Author(s):  
Benjamin T. Burpee ◽  
Jasmine E. Saros ◽  
Leora Nanus ◽  
Jill Baron ◽  
Janice Brahney ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhaolong Ding ◽  
Xu Liu ◽  
Lu Gong ◽  
Xin Chen ◽  
Jingjing Zhao ◽  
...  

AbstractHuman activities have increased the input of nitrogen (N) to forest ecosystems and have greatly affected litter decomposition and the soil environment. But differences in forests with different nitrogen deposition backgrounds. To better understand the response of litter decomposition and soil environment of N-limited forest to nitrogen deposition. We established an in situ experiment to simulate the effects of N deposition on soil and litter ecosystem processes in a Picea schrenkiana forest in the Tianshan Mountains, China. This study included four N treatments: control (no N addition), low N addition (LN: 5 kg N ha−1 a−1), medium N addition (MN: 10 kg N ha−1 a−1) and high N addition (HN: 20 kg N ha−1 a−1). Our results showed that N addition had a significant effect on litter decomposition and the soil environment. Litter mass loss in the LN treatment and in the MN treatment was significantly higher than that in the control treatment. In contrast, the amount of litter lost in the HN treatment was significantly lower than the other treatments. N application inhibited the degradation of lignin but promoted the breakdown of cellulose. The carbon (C), N, and phosphorus (P) contents of litter did not differ significantly among the treatments, but LN promoted the release of C and P. Our results also showed that soil pH decreased with increasing nitrogen application rates, while soil enzyme activity showed the opposite trend. In addition, the results of redundancy analysis (RDA) and correlation analyses showed that the soil environment was closely related to litter decomposition. Soil enzymes had a positive effect on litter decomposition rates, and N addition amplified these correlations. Our study confirmed that N application had effects on litter decomposition and the soil environment in a N-limited P. schrenkiana forest. LN had a strong positive effect on litter decomposition and the soil environment, while HN was significantly negative. Therefore, increased N deposition may have a negative effect on material cycling of similar forest ecosystems in the near future.


2022 ◽  
Vol 169 ◽  
pp. 104212
Author(s):  
Jihui Tian ◽  
Kai Wei ◽  
Tao Sun ◽  
Nan Jiang ◽  
Zhenhua Chen ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Lucija Lovreškov ◽  
Ivan Limić ◽  
Lukrecija Butorac ◽  
Tamara Jakovljević

Mediterranean forests along the eastern Adriatic coast have an important ecological role. However, few studies have been conducted on nitrogen deposition so far. To improve this knowledge, the main aims of our study were: (i) to estimate nitrogen inputs and determine differences among the four Mediterranean forests, (ii) to determine the seasonal behaviour of N deposition compounds, and (iii) to discuss the results in relation to forest type and precipitation. Measurements were carried out over a two-year period on four plots in two regions: holm oak and pubescent oak in Istria, Aleppo pine and black pine in Dalmatia. Bulk open field and throughfall deposition were sampled with continuously exposed collectors. Measurements, analyses and data validation of precipitation and N compounds were carried out. The results showed that the highest average monthly precipitation was recorded in the black pine plot and the lowest in the Aleppo pine plot. Nitrate and ammonia in conifer plots in throughfall samples were lower than in bulk open field samples, indicating possible retention by the tree canopy. The results revealed a higher amount of N deposition collected in broadleaved forests than in conifer forests indicating the washing out of N compounds previously deposited and accumulated in forest canopy. The chemistry of N deposition was strongly influenced by local and anthropogenic sources as well as neighbouring countries. Our results may fill the knowledge gap in understanding the influence of precipitation and seasonality of N compounds in different Mediterranean forest types along the eastern Adriatic coast.


2021 ◽  
Author(s):  
Xiao‐Hui Zhou ◽  
Jing‐Ji Li ◽  
Yuan‐Yuan Gao ◽  
Pei‐Hao Peng ◽  
Wei‐Ming He

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2719
Author(s):  
Emmanuella A. Kwaku ◽  
Shikui Dong ◽  
Hao Shen ◽  
Wei Li ◽  
Wei Sha ◽  
...  

The ability of fragile ecosystems of alpine regions to adapt and thrive under warming and nitrogen deposition is a pressing conservation concern. The lack of information on how these ecosystems respond to the combined impacts of elevated levels of nitrogen and a warming climate limits the sustainable management approaches of alpine grasslands. In this study, we experimented using a completely random blocked design to examine the effects of warming and nitrogen deposition on the aboveground biomass and diversity of alpine grassland plant communities. The experiment was carried out from 2015 to 2018 in four vegetation types, e.g., alpine desert, alpine desert steppe, alpine marsh, and alpine salinised meadow, in the Aerjin Mountain Nature Reserve (AMNR) on the Qinghai–Tibetan Plateau (QTP). We found that W (warming) and WN (warming plus N deposition) treatment significantly increased the aboveground biomass of all the vegetation types (p < 0.05) in 2018. However, W and WN treatment only significantly increased the Shannon diversity of salinised meadows in 2018 and had no significant effect on the Shannon diversity of other vegetation types. Such results suggested that long-term nitrogen deposition and warming can consistently stimulate biomass accumulation of the alpine plant communities. Compared with other vegetation types, the diversity of alpine salinised meadows are generally more susceptible to long-term warming and warming combined with N deposition. Warming accounts many of such variabilities, while short-term N deposition alone may not significantly have an evident effect on the productivity and diversity of alpine grasslands. Our findings suggested that the effects of short-term (≤4 years) N deposition on alpine vegetation productivity and diversity were minimal, while long-term warming (>4 years) will be much more favourable for alpine vegetation.


2021 ◽  
Vol 21 (23) ◽  
pp. 17743-17758
Author(s):  
Xueying Liu ◽  
Amos P. K. Tai ◽  
Ka Ming Fung

Abstract. With the rising food demands from the future world population, more intense agricultural activities are expected to cause substantial perturbations to the global nitrogen cycle, aggravating surface air pollution and imposing stress on terrestrial ecosystems. Much less studied, however, is how the terrestrial ecosystem changes induced by agricultural nitrogen deposition may modify biosphere–atmosphere exchange and further exert secondary feedback effects on global air quality. Here we examined the responses of surface ozone air quality to terrestrial ecosystem changes caused by year 2000 to year 2050 changes in agricultural ammonia emissions and the subsequent nitrogen deposition by asynchronously coupling between the land and atmosphere components within the Community Earth System Model framework. We found that global gross primary production is enhanced by 2.1 Pg C yr−1, following a 20 % (20 Tg N yr−1) increase in global nitrogen deposition by the end of the year 2050 in response to rising agricultural ammonia emissions. Leaf area index was simulated to be higher by up to 0.3–0.4 m2 m−2 over most tropical grasslands and croplands and 0.1–0.2 m2 m−2 across boreal and temperate forests at midlatitudes. Around 0.1–0.4 m increases in canopy height were found in boreal and temperate forests, and there were ∼0.1 m increases in tropical grasslands and croplands. We found that these vegetation changes could lead to surface ozone changes by ∼0.5 ppbv (part per billion by volume) when prescribed meteorology was used (i.e., large-scale meteorological responses to terrestrial changes were not allowed), while surface ozone could typically be modified by 2–3 ppbv when meteorology was dynamically simulated in response to vegetation changes. Rising soil NOx emissions, from 7.9 to 8.7 Tg N yr−1, could enhance surface ozone by 2–3 ppbv with both prescribed and dynamic meteorology. We, thus, conclude that, following enhanced nitrogen deposition, the modification of the meteorological environment induced by vegetation changes and soil biogeochemical changes are the more important pathways that can modulate future ozone pollution, representing a novel linkage between agricultural activities and ozone air quality.


Sign in / Sign up

Export Citation Format

Share Document