Partially Hydrolyzed Guar Gum Modulates Gut Microbiota, Regulates the Levels of Neurotransmitters and Prevents CUMS‐Induced Depressive‐like Behavior in Mice

2021 ◽  
pp. 2100146
Author(s):  
Yanqiu Chen ◽  
Mei Wan ◽  
Yi Zhong ◽  
Tingfang Gao ◽  
Yuehan Zhang ◽  
...  
2018 ◽  
Vol 43 (2) ◽  
pp. e12715 ◽  
Author(s):  
Xiaodan Fu ◽  
Rong Li ◽  
Tan Zhang ◽  
Meng Li ◽  
Haijin Mou

Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1257 ◽  
Author(s):  
Simon J. Reider ◽  
Simon Moosmang ◽  
Judith Tragust ◽  
Lovro Trgovec-Greif ◽  
Simon Tragust ◽  
...  

(1) Background: Alterations in the structural composition of the human gut microbiota have been identified in various disease entities along with exciting mechanistic clues by reductionist gnotobiotic modeling. Improving health by beneficially modulating an altered microbiota is a promising treatment approach. Prebiotics, substrates selectively used by host microorganisms conferring a health benefit, are broadly used for dietary and clinical interventions. Herein, we sought to investigate the microbiota-modelling effects of the soluble fiber, partially hydrolyzed guar gum (PHGG). (2) Methods: We performed a 9 week clinical trial in 20 healthy volunteers that included three weeks of a lead-in period, followed by three weeks of an intervention phase, wherein study subjects received 5 g PHGG up to three times per day, and concluding with a three-week washout period. A stool diary was kept on a daily basis, and clinical data along with serum/plasma and stool samples were collected on a weekly basis. PHGG-induced alterations of the gut microbiota were studied by 16S metagenomics of the V1–V3 and V3–V4 regions. To gain functional insight, we further studied stool metabolites using nuclear magnetic resonance (NMR) spectroscopy. (3) Results: In healthy subjects, PHGG had significant effects on stool frequency and consistency. These effects were paralleled by changes in α- (species evenness) and β-diversity (Bray–Curtis distances), along with increasing abundances of metabolites including butyrate, acetate and various amino acids. On a taxonomic level, PHGG intake was associated with a bloom in Ruminococcus, Fusicatenibacter, Faecalibacterium and Bacteroides and a reduction in Roseburia, Lachnospiracea and Blautia. The majority of effects disappeared after stopping the prebiotic and most effects tended to be more pronounced in male participants. (4) Conclusions: Herein, we describe novel aspects of the prebiotic PHGG on compositional and functional properties of the healthy human microbiota.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2508
Author(s):  
Takafumi Aoki ◽  
Eri Oyanagi ◽  
Chihiro Watanabe ◽  
Nanako Kobiki ◽  
Suzuka Miura ◽  
...  

Although dietary fiber treatment alters the gut microbiota and its metabolite production, it is unclear whether or not exercise habits can have a supplemental effect on changes in gut microbiota in dietary fiber-treated mice. To clarify the supplemental effect of voluntary exercise on gut microbiota in partially hydrolyzed guar gum (PHGG), which is a soluble dietary fiber, treated mice under high-fat diet (HFD) feeding, 4-week-old male C57BL/6J mice (n = 80) were randomly divided into two dietary groups: the control-diet (CD) and HFD. Then, each dietary group was treated with or without PHGG, and with or without wheel running. After the experimental period, measurement of maximal oxygen consumption, a glucose tolerance test and fecal materials collection for analysis of gut microbiota were carried out. Voluntary exercise load in PHGG treatment under HFD feeding showed the supplemental effect of exercise on obesity (p < 0.01) and glucose tolerance (p < 0.01). Additionally, in both CD and HFD groups, voluntary exercise accelerated the decrease in the Firmicutes/Bacteroidetes ratio in mice fed with PHGG (p < 0.01). These findings suggest that voluntary exercise might activate the prevention of obesity and insulin resistance more via change in gut microbiota in mice administrated with PHGG.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1420
Author(s):  
Ryo Inoue ◽  
Hikari Otabi ◽  
Taiga Yamashita ◽  
Naoya Takizawa ◽  
Toshinobu Kido ◽  
...  

Probiotics and prebiotics have become viable alternatives of growth-promoting antimicrobials in animal production. Here, we tested partially hydrolyzed guar gum (PHGG) as a possible prebiotic for piglets in the commercial farm. Five hundred and ninety-four piglets were used for the experiments, with 293 given a normal pig feed (control), while the rest the feed plus 0.06% (w/w) of PHGG (PHGG). One and three months post-PHGG supplementation, fecal samples were collected from randomly selected 20 piglets in each group and analyzed for microbiota and organic acid concentrations. Notably, the abundance of Streptococcus, and unclassified Ruminococcaceae were lower (p < 0.05) in PHGG than in control, one-month post-supplementation. Lactobacillus and Prevotella were higher (p < 0.05), while Streptococcus was lower (p < 0.05), in PHGG than in control, three months post-supplementation. The concentrations of acetate, propionate, and butyrate were greater in PHGG than in control, three months post-supplementation. Finally, PHGG grew faster and had fewer deaths until slaughter time (p < 0.05), than control. We concluded that PHGG not only was an effective prebiotic to alter gut microbiota of weanling piglets but also can possibly promote body weight accretion and health.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2170 ◽  
Author(s):  
Zenta Yasukawa ◽  
Ryo Inoue ◽  
Makoto Ozeki ◽  
Tsutomu Okubo ◽  
Tomohisa Takagi ◽  
...  

Partially hydrolyzed guar gum (PHGG) is a water-soluble dietary fiber and is used in solid and liquid food to regulate gut function. The aim of this study was to investigate effects of PHGG on bowel movements (stool form and frequency), plasma bile acids, quality of life, and gut microbiota of healthy volunteers with a tendency toward diarrhea, i.e., irritable bowel syndrome diarrhea (IBS-D)-like symptoms. A randomized, double-blind, placebo-controlled, and parallel trial was performed on 44 healthy volunteers (22 males, 22 females, 41.9 ± 6.3 years old (average ± SD)) with minimum 7 bowel movements every week, wherein above 50% of their stool was between the Bristol stool scale (BSS) value of 5 and 6. Intake of the PHGG for 3 months significantly improved stool form, evaluated using BSS, and had no effects on stool frequency. BSS was significantly normalized in the group consuming the PHGG compared with the placebo. Comprehensive fecal microbiome analysis by the 16S rRNA-sequence method detected significant changes in the ratio of some bacteria, such as an increase of Bifidobacterium (p < 0.05) in the PHGG group. Our results suggest that intake of PHGG improves human stool form via regulating intestinal microbiota.


2013 ◽  
Vol 144 (5) ◽  
pp. S-546
Author(s):  
Kentaro Suzuki ◽  
Yuji Naito ◽  
Kazuhiro Kamada ◽  
Syunsuke Kishimoto ◽  
Yukiko Uehara ◽  
...  

2020 ◽  
Vol 21 (2) ◽  
pp. 635 ◽  
Author(s):  
Chuanhui Xu ◽  
Chuanshang Cheng ◽  
Xiu Zhang ◽  
Jian Peng

The transition from pregnancy to lactation is characterized by a progressive decrease in insulin sensitivity. Propionate increases with dietary fiber consumption and has been shown to improve insulin sensitivity. Recent studies suggest that plasma odd-chain fatty acids [OCFAs; pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0)] that inversely correlated with insulin resistance are synthesized endogenously from gut-derived propionate. The present study investigated the effects of soluble fiber during gestation on gut microbiota, plasma non-esterified fatty acids and insulin sensitivity in sows. Sows were allocated to either control or 2.0% guar gum plus pregelatinized waxy maize starch (SF) dietary treatment during gestation. The SF addition changes the structure and composition of gut microbiota in sows. Genus Eubacterium increased by SF addition may promote intestinal propionate production. Moreover, the dietary SF increased circulating levels of plasma OCFAs, especially C17:0. The SF-fed sows had a higher insulin sensitivity and a lower systemic inflammation level during perinatal period. Furthermore, the plasma C15:0 and C17:0 was negatively correlated with the area under curve of plasma glucose after meal and plasma interleukin-6. In conclusion, dietary SF improves insulin sensitivity and alleviates systemic inflammation in perinatal sows, potentially related to its stimulating effect on propionate and OCFAs production.


Sign in / Sign up

Export Citation Format

Share Document