partially hydrolyzed guar gum
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 19)

H-INDEX

19
(FIVE YEARS 3)

Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1420
Author(s):  
Ryo Inoue ◽  
Hikari Otabi ◽  
Taiga Yamashita ◽  
Naoya Takizawa ◽  
Toshinobu Kido ◽  
...  

Probiotics and prebiotics have become viable alternatives of growth-promoting antimicrobials in animal production. Here, we tested partially hydrolyzed guar gum (PHGG) as a possible prebiotic for piglets in the commercial farm. Five hundred and ninety-four piglets were used for the experiments, with 293 given a normal pig feed (control), while the rest the feed plus 0.06% (w/w) of PHGG (PHGG). One and three months post-PHGG supplementation, fecal samples were collected from randomly selected 20 piglets in each group and analyzed for microbiota and organic acid concentrations. Notably, the abundance of Streptococcus, and unclassified Ruminococcaceae were lower (p < 0.05) in PHGG than in control, one-month post-supplementation. Lactobacillus and Prevotella were higher (p < 0.05), while Streptococcus was lower (p < 0.05), in PHGG than in control, three months post-supplementation. The concentrations of acetate, propionate, and butyrate were greater in PHGG than in control, three months post-supplementation. Finally, PHGG grew faster and had fewer deaths until slaughter time (p < 0.05), than control. We concluded that PHGG not only was an effective prebiotic to alter gut microbiota of weanling piglets but also can possibly promote body weight accretion and health.


2021 ◽  
Vol 27 (18) ◽  
pp. 2160-2176
Author(s):  
Shun Takayama ◽  
Kazuhiro Katada ◽  
Tomohisa Takagi ◽  
Takaya Iida ◽  
Tomohiro Ueda ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2759
Author(s):  
Wenqi Zhao ◽  
Ying Zhou ◽  
Yuqing Yuan ◽  
Zhihong Fan ◽  
Yixue Wu ◽  
...  

This study investigated the preload effect of the medium and high glycemic index (GI) potato, as well as the combination of partially hydrolyzed guar gum (HG) and potato, when ingested prior to a rice meal, on the iso-carbohydrate basis. In a randomized crossover trial, 17 healthy female subjects consumed (1) rice; (2) co-ingestion of highly cooked potato (HP), and rice (HP + R); (3) co-ingestion of minimally cooked potato (MP) and rice (MP + R); (4) preload HP prior to rice meal (PHP + R); (5) preload MP prior to rice meal (PMP + R); (6) co-ingestion of partially hydrolyzed guar gum (HG), HP and rice (HG + HP + R); (7) preload HG prior to co-ingestion of HP and rice (PHG + HP + R); (8) co-preload of HG and HP prior to rice (PHG + PHP + R); and (9) preload of HP prior to co-ingestion of HG and rice (PHP + HG + R). Postprandial glycemic response (GR) tests and subjective satiety tests were conducted for each test food. Cooked potato as a preload to a rice meal could significantly cut the acute postprandial glycemic excursion by around 1.0 mmol/L, irrespective of the GI of the preload. Co-preload of partial hydrolyzed guar gum and highly cooked potato (PHG + PHP + R) resulted in improved acute GR in terms of peak glucose value and glycemic excursion compared with either HG preload or HP preload. All the meals with preload showed comparable or improved self-reported satiety. Within an equicarbohydrate exchange framework, both high-GI and medium-GI potato preload decreased the postprandial glycemic excursion in young healthy female subjects. The combination of HG and HP as double preload resulted in better GR than both single HG or HP preload did.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2508
Author(s):  
Takafumi Aoki ◽  
Eri Oyanagi ◽  
Chihiro Watanabe ◽  
Nanako Kobiki ◽  
Suzuka Miura ◽  
...  

Although dietary fiber treatment alters the gut microbiota and its metabolite production, it is unclear whether or not exercise habits can have a supplemental effect on changes in gut microbiota in dietary fiber-treated mice. To clarify the supplemental effect of voluntary exercise on gut microbiota in partially hydrolyzed guar gum (PHGG), which is a soluble dietary fiber, treated mice under high-fat diet (HFD) feeding, 4-week-old male C57BL/6J mice (n = 80) were randomly divided into two dietary groups: the control-diet (CD) and HFD. Then, each dietary group was treated with or without PHGG, and with or without wheel running. After the experimental period, measurement of maximal oxygen consumption, a glucose tolerance test and fecal materials collection for analysis of gut microbiota were carried out. Voluntary exercise load in PHGG treatment under HFD feeding showed the supplemental effect of exercise on obesity (p < 0.01) and glucose tolerance (p < 0.01). Additionally, in both CD and HFD groups, voluntary exercise accelerated the decrease in the Firmicutes/Bacteroidetes ratio in mice fed with PHGG (p < 0.01). These findings suggest that voluntary exercise might activate the prevention of obesity and insulin resistance more via change in gut microbiota in mice administrated with PHGG.


Sign in / Sign up

Export Citation Format

Share Document