scholarly journals The Cognate Coat Protein Is Required for Cell-to-Cell Movement of a Chimeric Brome Mosaic Virus Mediated by the Cucumber Mosaic Virus Movement Protein

Virology ◽  
1999 ◽  
Vol 265 (2) ◽  
pp. 226-234 ◽  
Author(s):  
Hideaki Nagano ◽  
Kazuyuki Mise ◽  
Tetsuro Okuno ◽  
Iwao Furusawa
2001 ◽  
Vol 75 (17) ◽  
pp. 8045-8053 ◽  
Author(s):  
Hideaki Nagano ◽  
Kazuyuki Mise ◽  
Iwao Furusawa ◽  
Tetsuro Okuno

ABSTRACT Plant viruses have movement protein (MP) gene(s) essential for cell-to-cell movement in hosts. Cucumber mosaic virus (CMV) requires its own coat protein (CP) in addition to the MP for intercellular movement. Our present results using variants of both CMV and a chimeric Brome mosaic virus with the CMV MP gene revealed that CMV MP truncated in its C-terminal 33 amino acids has the ability to mediate viral movement independently of CP. Coexpression of the intact and truncated CMV MPs extremely reduced movement of the chimeric viruses, suggesting that these heterogeneous CMV MPs function antagonistically. Sequential deletion analyses of the CMV MP revealed that the dispensability of CP occurred when the C-terminal deletion ranged between 31 and 36 amino acids and that shorter deletion impaired the ability of the MP to promote viral movement. This is the first report that a region of MP determines the requirement of CP in cell-to-cell movement of a plant virus.


1998 ◽  
Vol 11 (5) ◽  
pp. 351-357 ◽  
Author(s):  
Ki Hyun Ryu ◽  
Chung-Ho Kim ◽  
Peter Palukaitis

Infection of maize by the Fny strain of cucumber mosaic virus (CMV) and resistance against infection by the M strain of CMV were mapped to the coat protein gene on RNA 3 of CMV, using biologically active cDNA clones of Fny-CMV RNAs 1, 2, and 3 and RNAs 2 and 3 of M-CMV, as well as chimeras constructed between cDNA clones of M-CMV and Fny-CMV RNA 3. Changes in the coat protein gene of M-CMV RNA 3 at both positions 129 (Leu to Pro) and 162 (Thr to Ala) were required to overcome the resistance against M-CMV in maize. Resistance to M-CMV in maize was correlated with an inability to detect virus accumulation in the inoculated leaves. Since the coat protein of CMV is involved in virus movement, but not virus replication, the data suggest that the resistance in maize to M-CMV is due to the inability of the M-CMV coat protein to promote the cell-to-cell movement of CMV in maize.


2001 ◽  
Vol 14 (9) ◽  
pp. 1051-1062 ◽  
Author(s):  
Jesús A. Sánchez-Navarro ◽  
John F. Bol

The movement protein (MP) and coat protein (CP) encoded by Alfalfa mosaic virus (AMV) RNA 3 are both required for virus transport. RNA 3 vectors that expressed nonfused green fluorescent protein (GFP), MP:GPF fusions, or GFP:CP fusions were used to study the functioning of mutant MP and CP in protoplasts and plants. C-terminal deletions of up to 21 amino acids did not interfere with the function of the CP in cell-to-cell movement, although some of these mutations interfered with virion assembly. Deletion of the N-terminal 11 or C-terminal 45 amino acids did not interfere with the ability of MP to assemble into tubular structures on the protoplast surface. Additionally, N- or C-terminal deletions disrupted tubule formation. A GFP:CP fusion was targeted specifically into tubules consisting of a wild-type MP. All MP deletion mutants that showed cell-to-cell and systemic movement in plants were able to form tubular structures on the surface of protoplasts. Brome mosaic virus (BMV) MP did not support AMV transport. When the C-terminal 48 amino acids were replaced by the C-terminal 44 amino acids of the AMV MP, however, the BMV/AMV chimeric protein permitted wild-type levels of AMV transport. Apparently, the C terminus of the AMV MP, although dispensable for cell-to-cell movement, confers specificity to the transport process.


2004 ◽  
Vol 85 (6) ◽  
pp. 1751-1761 ◽  
Author(s):  
Atsushi Takeda ◽  
Masanori Kaido ◽  
Tetsuro Okuno ◽  
Kazuyuki Mise

The 3a movement protein (MP) plays a central role in the movement of Brome mosaic virus (BMV). To identify the functional regions in BMV MP, 24 alanine-scanning (AS) MP mutants of BMV were constructed. Infectivity of the AS mutants in the host plant Chenopodium quinoa showed that the central region of BMV MP is important for viral movement and both termini of BMV MP have effects on the development of systemic symptoms. A green-fluorescent-protein-expressing RNA3-based BMV vector containing a 2A sequence from Foot-and-mouth disease virus was also constructed. Using this vector, two AS mutants that showed more efficient cell-to-cell movement than wild-type BMV were identified. The MPs of these two AS mutants, which have mutations at their C termini, mediated cell-to-cell movement independently of coat protein (CP), unlike wild-type BMV MP. Furthermore, a BMV mutant with a truncation in the C-terminal 42 amino acids of MP was also able to move from cell to cell without CP, but did not move systemically, even in the presence of CP. These results and an encapsidation analysis suggest that the C terminus of BMV MP is involved in the requirement for CP in cell-to-cell movement and plays a role in long-distance movement. Furthermore, the ability to spread locally and form virions is not sufficient for the long-distance movement of BMV. The roles of MP and CP in BMV movement are discussed.


Virology ◽  
2011 ◽  
Vol 413 (2) ◽  
pp. 205-215 ◽  
Author(s):  
Masanori Kaido ◽  
Naoko Funatsu ◽  
Yasuko Tsuno ◽  
Kazuyuki Mise ◽  
Tetsuro Okuno

2005 ◽  
Vol 86 (4) ◽  
pp. 1213-1222 ◽  
Author(s):  
Seung Kook Choi ◽  
Peter Palukaitis ◽  
Byoung Eun Min ◽  
Mi Yeon Lee ◽  
Jang Kyung Choi ◽  
...  

The basis for differences in the timing of systemic symptom elicitation in zucchini squash between a pepper strain of Cucumber mosaic virus (Pf-CMV) and a cucurbit strain (Fny-CMV) was analysed. The difference in timing of appearance of systemic symptoms was shown to map to both RNA 2 and RNA 3 of Pf-CMV, with pseudorecombinant viruses containing either RNA 2 or RNA 3 from Pf-CMV showing an intermediate rate of systemic symptom development compared with those containing both or neither Pf-CMV RNAs. Symptom phenotype was shown to map to two single-nucleotide changes, both in codons for Ile at aa 267 and 168 (in Fny-CMV RNAs 2 and 3, respectively) to Thr (in Pf-CMV RNAs 2 and 3). The differential rate of symptom development was shown to be due to differences in the rates of cell-to-cell movement in the inoculated cotyledons, as well as differences in the rate of egress of the virus from the inoculated leaves. These data indicate that both the CMV 3a movement protein and the CMV 2a polymerase protein affect the rate of movement of CMV in zucchini squash and that these two proteins function independently of each other in their interactions with the host, facilitating virus movement.


Virology ◽  
2005 ◽  
Vol 333 (1) ◽  
pp. 10-21 ◽  
Author(s):  
Douglas Tremblay ◽  
Andrew A. Vaewhongs ◽  
Katherine A. Turner ◽  
Tim L. Sit ◽  
Steven A. Lommel

Sign in / Sign up

Export Citation Format

Share Document