virus transport
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 24)

H-INDEX

29
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Anthony Muhle ◽  
Nathan Palmer ◽  
Serge Edme ◽  
Gautam Sarath ◽  
Gary Yuen ◽  
...  

Abstract Panicum mosaic virus (PMV), the type species of the genus Panicovirus in the family Tombusviridae, naturally infects switchgrass (Panicum virgatum L.). PMV and its molecular partner, satellite panicum mosaic virus (SPMV), interact synergistically in co-infected millets with exacerbated disease phenotype and increased accumulation of PMV, compared to plants infected only by PMV. In this study, we examined the reaction of switchgrass cvs. Summer and Kanlow to PMV and PMV+SPMV infections at 24°C and 32°C. Switchgrass cv. Summer was susceptible to PMV at both temperatures. In contrast, cv. Kanlow was tolerant to PMV at 24°C but not at 32°C, suggesting that Kanlow harbors temperature-sensitive resistance against PMV. At 24°C, PMV was readily detected in inoculated leaves but not in upper non-inoculated leaves of Kanlow, suggesting that resistance to PMV was likely mediated by abrogation of long-distance virus transport. Co-infection by PMV and SPMV at 24°C and 32°C in cv. Summer but not in Kanlow caused increased symptomatic systemic infection and mild disease synergism with slightly increased PMV accumulation compared to plants infected only by PMV. These data suggest that the interaction between PMV and SPMV in switchgrass is cultivar dependent, manifested in Summer but not in Kanlow. However, co-inoculation of cv. Kanlow by PMV+SPMV caused an enhanced asymptomatic infection, suggesting a role for SPMV in enhancing symptomless infection in a tolerant cultivar. These data suggest that enhanced asymptomatic infections in virus-tolerant switchgrass cultivar could serve as a source for virus spread and play an important role in panicum mosaic disease epidemiology under field conditions. Our data revealed that cultivars, co-infection with SPMV, and temperature influenced the severity of symptoms elicited by PMV in switchgrass.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2460
Author(s):  
Snježana Mikuličić ◽  
Johannes Strunk ◽  
Luise Florin

During initial infection, human papillomaviruses (HPV) take an unusual trafficking pathway through their host cell. It begins with a long period on the cell surface, during which the capsid is primed and a virus entry platform is formed. A specific type of clathrin-independent endocytosis and subsequent retrograde trafficking to the trans-Golgi network follow this. Cellular reorganization processes, which take place during mitosis, enable further virus transport and the establishment of infection while evading intrinsic cellular immune defenses. First, the fragmentation of the Golgi allows the release of membrane-encased virions, which are partially protected from cytoplasmic restriction factors. Second, the nuclear envelope breakdown opens the gate for these virus–vesicles to the cell nucleus. Third, the dis- and re-assembly of the PML nuclear bodies leads to the formation of modified virus-associated PML subnuclear structures, enabling viral transcription and replication. While remnants of the major capsid protein L1 and the viral DNA remain in a transport vesicle, the viral capsid protein L2 plays a crucial role during virus entry, as it adopts a membrane-spanning conformation for interaction with various cellular proteins to establish a successful infection. In this review, we follow the oncogenic HPV type 16 during its long journey into the nucleus, and contrast pro- and antiviral processes.


2021 ◽  
Author(s):  
Carlos Barrera-Avalos ◽  
Roberto Luraschi ◽  
Eva Vallejos-Vidal ◽  
Maximiliano Figueroa ◽  
Esteban Arenillas ◽  
...  

The high demand for supplies during the COVID19-pandemic has generated several stock-out of material and essential reagents needed to meet the current high demand for diagnosis in the worldwide population. In this way, there is limited information regarding the performance of different virus transport medium (VTM) for nasopharyngeal swab sampling (NPS) aimed for SARS-CoV-2 detection. We compared the RT-qPCR amplification profile of four different commercial transport medium kits, including DNA/RNA Shield, NAT, VTM, and Phosphate-buffered saline (PBS) transport medium, for NPSs samples from Central Metropolitan Health Service, Santiago, Chile. The RT-qPCR showed a slight lower RNase P Cq value of the samples preserved and transported in DNA/RNA Shield compared to NAT medium. By contrast, a marked increase in the RNase P Cq value was registered in the samples transported with VTM compared to DNA/RNA Shield medium. For PBS-preserved NPS, the performance of two strategies were assessed due to the potential presence of any remaining active virus in the sample: (1) thermal inactivation; and (2) thermal inactivation treatment followed by RNA extraction. The heat inactivation showed a significantly lower Cq value for RNase P and viral ORF1ab Cq compared to the followed by RNA extraction. This study indicates that new medium alternatives could be used if supplies run out to diagnose COVID19


Retrovirology ◽  
2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Mojgan H. Naghavi

AbstractMicrotubules (MTs) form a filamentous array that provide both structural support and a coordinated system for the movement and organization of macromolecular cargos within the cell. As such, they play a critical role in regulating a wide range of cellular processes, from cell shape and motility to cell polarization and division. The array is radial with filament minus-ends anchored at perinuclear MT-organizing centers and filament plus-ends continuously growing and shrinking to explore and adapt to the intracellular environment. In response to environmental cues, a small subset of these highly dynamic MTs can become stabilized, acquire post-translational modifications and act as specialized tracks for cargo trafficking. MT dynamics and stability are regulated by a subset of highly specialized MT plus-end tracking proteins, known as +TIPs. Central to this is the end-binding (EB) family of proteins which specifically recognize and track growing MT plus-ends to both regulate MT polymerization directly and to mediate the accumulation of a diverse array of other +TIPs at MT ends. Moreover, interaction of EB1 and +TIPs with actin-MT cross-linking factors coordinate changes in actin and MT dynamics at the cell periphery, as well as during the transition of cargos from one network to the other. The inherent structural polarity of MTs is sensed by specialized motor proteins. In general, dynein directs trafficking of cargos towards the minus-end while most kinesins direct movement toward the plus-end. As a pathogenic cargo, HIV-1 uses the actin cytoskeleton for short-range transport most frequently at the cell periphery during entry before transiting to MTs for long-range transport to reach the nucleus. While the fundamental importance of MT networks to HIV-1 replication has long been known, recent work has begun to reveal the underlying mechanistic details by which HIV-1 engages MTs after entry into the cell. This includes mimicry of EB1 by capsid (CA) and adaptor-mediated engagement of dynein and kinesin motors to elegantly coordinate early steps in infection that include MT stabilization, uncoating (conical CA disassembly) and virus transport toward the nucleus. This review discusses recent advances in our understanding of how MT regulators and their associated motors are exploited by incoming HIV-1 capsid during early stages of infection.


2021 ◽  
Vol 197 ◽  
pp. 117040
Author(s):  
Salini Sasidharan ◽  
Scott A. Bradford ◽  
Jiří Šimůnek ◽  
Stephen R. Kraemer

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 523
Author(s):  
Jacques Piazzola ◽  
William Bruch ◽  
Christelle Desnues ◽  
Philippe Parent ◽  
Christophe Yohia ◽  
...  

Human behaviors probably represent the most important causes of the SARS-Cov-2 virus propagation. However, the role of virus transport by aerosols—and therefore the influence of atmospheric conditions (temperature, humidity, type and concentration of aerosols)—on the spread of the epidemic remains an open and still debated question. This work aims to study whether or not the meteorological conditions related to the different aerosol properties in continental and coastal urbanized areas might influence the atmospheric transport of the SARS-Cov-2 virus. Our analysis focuses on the lockdown period to reduce the differences in the social behavior and highlight those of the weather conditions. As an example, we investigated the contamination cases during March 2020 in two specific French areas located in both continental and coastal areas with regard to the meteorological conditions and the corresponding aerosol properties, the optical depth (AOD) and the Angstrom exponent provided by the AERONET network. The results show that the analysis of aerosol ground-based data can be of interest to assess a virus survey. We found that moderate to strong onshore winds occurring in coastal regions and inducing humid environment and large sea-spray production episodes coincides with smaller COVID-19 contamination rates. We assume that the coagulation of SARS-Cov-2 viral particles with hygroscopic salty sea-spray aerosols might tend to inhibit its viral infectivity via possible reaction with NaCl, especially in high relative humidity environments typical of maritime sites.


2021 ◽  
Author(s):  
Hamid Rahai ◽  
Jeremy Bonifacio

The authors performed unsteady numerical simulations of virus/particle transport released from a hypothetical passenger aboard a commuter bus. The bus model was sized according to a typical city bus used to transport passengers within the city of Long Beach in California. The simulations were performed for the bus in transit and when the bus was at a bus stop opening the middle doors for 30 seconds for passenger boarding and drop off. The infected passenger was sitting in an aisle seat in the middle of the bus, releasing 1267 particles (viruses)/min. The bus ventilation system released air from two linear slots in the ceiling at 2097 cubic feet per minute (CFM) and the air was exhausted at the back of the bus. Results indicated high exposure for passengers sitting behind the infectious during the bus transit. With air exchange outside during the bus stop, particles were spread to seats in front of the infectious passenger, thus increasing the risk of infection for the passengers sitting in front of the infectious person. With higher exposure time, the risk of infection is increased. One of the most important factors in assessing infection risk of respiratory diseases is the spatial distribution of the airborne pathogens. The deposition of the particles/viruses within the human respiratory system depends on the size, shape, and weight of the virus, the morphology of the respiratory tract, as well as the subject’s breathing pattern. For the current investigation, the viruses are modeled as solid particles of fixed size. While the results provide details of particles transport within a bus along with the probable risk of infection for a short duration, however, these results should be taken as preliminary as there are other significant factors such as the virus’s survival rate, the size distribution of the virus, and the space ventilation rate and mixing that contribute to the risk of infection and have not been taken into account in this investigation.


2021 ◽  
Author(s):  
Mariano Carossino ◽  
Paige Montanaro ◽  
Aoife O’Connell ◽  
Devin Kenney ◽  
Hans Gertje ◽  
...  

ABSTRACTAnimal models recapitulating the distinctive features of severe COVID-19 are critical to enhance our understanding of SARS-CoV-2 pathogenesis. Transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) under the cytokeratin 18 promoter (K18-hACE2) represent a lethal model of SARS-CoV-2 infection. However, the cause(s) and mechanisms of lethality in this mouse model remain unclear. Here, we evaluated the spatiotemporal dynamics of SARS-CoV-2 infection for up to 14 days post-infection. Despite infection and moderate inflammation in the lungs, lethality was invariably associated with viral neuroinvasion and neuronal damage (including spinal motor neurons). Neuroinvasion occurred following virus transport through the olfactory neuroepithelium in a manner that was only partially dependent on hACE2. Interestingly, SARS-CoV-2 tropism was overall neither widespread among nor restricted to only ACE2-expressing cells. Although our work incites caution in the utility of the K18-hACE2 model to study global aspects of SARS-CoV-2 pathogenesis, it underscores this model as a unique platform for exploring the mechanisms of SARS-CoV-2 neuropathogenesis.SUMMARYCOVID-19 is a respiratory disease caused by SARS-CoV-2, a betacoronavirus. Here, we show that in a widely used transgenic mouse model of COVID-19, lethality is invariably associated with viral neuroinvasion and the ensuing neuronal disease, while lung inflammation remains moderate.


Sign in / Sign up

Export Citation Format

Share Document