movement proteins
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 16)

H-INDEX

40
(FIVE YEARS 1)

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1442
Author(s):  
Yaarit Kutsher ◽  
Dalia Evenor ◽  
Eduard Belausov ◽  
Moshe Lapidot ◽  
Moshe Reuveni

Macromolecule and cytosolic signal distribution throughout the plant employs a unique cellular and intracellular mechanism called plasmodesmata (PD). Plant viruses spread throughout plants via PD using their movement proteins (MPs). Viral MPs induce changes in plasmodesmata’s structure and alter their ability to move macromolecule and cytosolic signals. The developmental distribution of a family member of proteins termed plasmodesmata located proteins number 5 (PDLP5) conjugated to GFP (PDLP5-GFP) is described here. The GFP enables the visual localization of PDLP5 in the cell via confocal microscopy. We observed that PDLP5-GFP protein is present in seed protein bodies and immediately after seed imbibition in the plasma membrane. The effect of three different plant viruses, the tobacco mosaic virus (TMV), tomato brown rugose fruit virus (ToBRFV, tobamoviruses), and tomato yellow leaf curl virus (TYLCV, begomoviruses), on PDLP5-GFP accumulation at the plasmodesmata was tested. In tobacco leaf, TMV and ToBRFV increased PDLP5-GFP amount at the plasmodesmata of cell types compared to control. However, there was no statistically significant difference in tomato leaf. On the other hand, TYLCV decreased PDLP5-GFP quantity in plasmodesmata in all tomato leaf cells compared to control, without any significant effect on plasmodesmata in tobacco leaf cells.


Virology ◽  
2021 ◽  
Author(s):  
Andrea Happle ◽  
Holger Jeske ◽  
Tatjana Kleinow

2021 ◽  
Author(s):  
Yuji Fujimoto ◽  
Takuya Keima ◽  
Masayoshi Hashimoto ◽  
Yuka Hagiwara-Komoda ◽  
Naoi Hosoe ◽  
...  

Regardless of the general model of translation in eukaryotic cells, a number of studies suggested that many of mRNAs encode multiple proteins. Leaky scanning, which supplies ribosomes to downstream open reading frames (ORFs) by read-through of upstream ORFs, is the most major regulatory mechanism to translate polycistronic mRNAs. However, the general regulatory factors controlling leaky scanning and their biological relevance have rarely been elucidated, with exceptions such as the Kozak sequence. Here, we have analyzed the strategy of a plant RNA virus to translate three movement proteins from a single RNA molecule through leaky scanning. The in planta and in vitro results indicate that significantly shorter 5′ UTR of the most upstream ORF promotes leaky scanning, potentially finetuning the translation efficiency of the three proteins in a single RNA molecule to optimize viral propagation. Moreover, in plant endogenous mRNAs, we found that shorter UTRs were more frequently observed in uORFs of polycistronic mRNAs. We propose that the promotion of leaky scanning induced by a short 5′ UTR (LISH), together with the Kozak sequence, is a conserved gene regulation mechanism not only in viruses but also in eukaryotes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Phu-Tri Tran ◽  
Vitaly Citovsky

AbstractCell-to-cell movement is an important step for initiation and spreading of virus infection in plants. This process occurs through the intercellular connections, termed plasmodesmata (PD), and is usually mediated by one or more virus-encoded movement proteins (MP) which interact with multiple cellular factors, among them protein kinases that usually have negative effects on MP function and virus movement. In this study, we report physical and functional interaction between MP of Tobacco mosaic virus (TMV), the paradigm of PD-moving proteins, and a receptor-like kinase BAM1 from Arabidopsis and its homolog from Nicotiana benthamiana. The interacting proteins accumulated in the PD regions, colocalizing with a PD marker. Reversed genetics experiments, using BAM1 gain-of-function and loss-of-function plants, indicated that BAM1 is required for efficient spread and accumulation the virus during initial stages of infection of both plant species by TMV. Furthermore, BAM1 was also required for the efficient cell-to-cell movement of TMV MP, suggesting that BAM1 interacts with TMV MP to support early movement of the virus. Interestingly, this role of BAM1 in viral movement did not require its protein kinase activity. Thus, we propose that association of BAM1 with TMV MP at PD facilitates the MP transport through PD, which, in turn, enhances the spread of the viral infection.


2021 ◽  
Vol 9 (4) ◽  
pp. 695
Author(s):  
Gaurav Kumar ◽  
Indranil Dasgupta

Of the various proteins encoded by plant viruses, one of the most interesting is the movement protein (MP). MPs are unique to plant viruses and show surprising structural and functional variability while maintaining their core function, which is to facilitate the intercellular transport of viruses or viral nucleoprotein complexes. MPs interact with components of the intercellular channels, the plasmodesmata (PD), modifying their size exclusion limits and thus allowing larger particles, including virions, to pass through. The interaction of MPs with the components of PD, the formation of transport complexes and the recruitment of host cellular components have all revealed different facets of their functions. Multitasking is an inherent property of most viral proteins, and MPs are no exception. Some MPs carry out multitasking, which includes gene silencing suppression, viral replication and modulation of host protein turnover machinery. This review brings together the current knowledge on MPs, focusing on their structural variability, various functions and interactions with host proteins.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1547
Author(s):  
Yuri L. Dorokhov ◽  
Ekaterina V. Sheshukova ◽  
Tatiana E. Byalik ◽  
Tatiana V. Komarova

The modern view of the mechanism of intercellular movement of viruses is based largely on data from the study of the tobacco mosaic virus (TMV) 30-kDa movement protein (MP). The discovered properties and abilities of TMV MP, namely, (a) in vitro binding of single-stranded RNA in a non-sequence-specific manner, (b) participation in the intracellular trafficking of genomic RNA to the plasmodesmata (Pd), and (c) localization in Pd and enhancement of Pd permeability, have been used as a reference in the search and analysis of candidate proteins from other plant viruses. Nevertheless, although almost four decades have passed since the introduction of the term “movement protein” into scientific circulation, the mechanism underlying its function remains unclear. It is unclear why, despite the absence of homology, different MPs are able to functionally replace each other in trans-complementation tests. Here, we consider the complexity and contradictions of the approaches for assessment of the ability of plant viral proteins to perform their movement function. We discuss different aspects of the participation of MP and MP/vRNA complexes in intra- and intercellular transport. In addition, we summarize the essential MP properties for their functioning as “conditioners”, creating a favorable environment for viral reproduction.


2020 ◽  
pp. PHYTO-05-20-019 ◽  
Author(s):  
Song Zhang ◽  
Aijun Huang ◽  
Xin Zhou ◽  
Zhenghe Li ◽  
Ralf G. Dietzgen ◽  
...  

Seven isolates of a putative cytorhabdovirus (family Rhabdoviridae, order Mononegavirales) designated as citrus-associated rhabdovirus (CiaRV) were identified in citrus, passion fruit, and paper bush from the same geographical area in China. CiaRV, bean-associated cytorhabdovirus (Brazil), and papaya virus E (Ecuador) should be taxonomically classified in the species Papaya cytorhabdovirus. Due to natural mutations, the glycoprotein (G) and P4 genes were impaired in citrus-infecting isolates of CiaRV, resulting in an atypical rhabdovirus genome organization of 3′ leader-N-P-P3-M-L-5′ trailer. The P3 protein of CiaRV shared a common origin with begomoviral movement proteins (family Geminiviridae). Secondary structure analysis and trans-complementation of movement-deficient tomato mosaic virus and potato virus X mutants by CiaRV P3 supported its function in viral cell-to-cell trafficking. The wide geographical dispersal of CiaRV and related viruses suggests an efficient transmission mechanism, as well as an underlying risk to global agriculture. Both the natural phenomenon and experimental analyses demonstrated presence of the “degraded” type of CiaRV in citrus, in parallel to “undegraded” types in other host plant species. This case study shows a plant virus losing the function of an important but nonessential gene, likely due to host shift and adaption, which deepened our understanding of course of natural viral diversification.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1010
Author(s):  
Venura Herath ◽  
Gustavo Romay ◽  
Cesar D. Urrutia ◽  
Jeanmarie Verchot

Bunyavirales are negative-sense segmented RNA viruses infecting arthropods, protozoans, plants, and animals. This study examines the phylogenetic relationships of plant viruses within this order, many of which are recently classified species. Comprehensive phylogenetic analyses of the viral RNA dependent RNA polymerase (RdRp), precursor glycoprotein (preGP), the nucleocapsid (N) proteins point toward common progenitor viruses. The RdRp of Fimoviridae and Tospoviridae show a close evolutional relationship while the preGP of Fimoviridae and Phenuiviridae show a closed relationship. The N proteins of Fimoviridae were closer to the Phasmaviridae, the Tospoviridae were close to some Phenuiviridae members and the Peribunyaviridae. The plant viral movement proteins of species within the Tospoviridae and Phenuiviridae were more closely related to each other than to members of the Fimoviridae. Interestingly, distal ends of 3′ and 5′ untranslated regions of species within the Fimoviridae shared similarity to arthropod and vertebrate infecting members of the Cruliviridae and Peribunyaviridae compared to other plant virus families. Co-phylogeny analysis of the plant infecting viruses indicates that duplication and host switching were more common than co-divergence with a host species.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Shao-Kang Zhang ◽  
Tian-Yu Zhao ◽  
Xing Shi ◽  
Yu-Zi Liu ◽  
Ying Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document