scholarly journals Texture Analysis of CT Images for Vascular Segmentation: A Revised Run Length Approach

Author(s):  
Barbara Podda ◽  
Andrea Giachetti
Author(s):  
Mona E. Elbashier ◽  
Suhaib Alameen ◽  
Caroline Edward Ayad ◽  
Mohamed E. M. Gar-Elnabi

This study concern to characterize the pancreas areato head, body and tail using Gray Level Run Length Matrix (GLRLM) and extract classification features from CT images. The GLRLM techniques included eleven’s features. To find the gray level distribution in CT images it complements the GLRLM features extracted from CT images with runs of gray level in pixels and estimate the size distribution of thesubpatterns. analyzing the image with Interactive Data Language IDL software to measure the grey level distribution of images. The results show that the Gray Level Run Length Matrix and  features give classification accuracy of pancreashead 89.2%, body 93.6 and the tail classification accuracy 93.5%. The overall classification accuracy of pancreas area 92.0%.These relationships are stored in a Texture Dictionary that can be later used to automatically annotate new CT images with the appropriate pancreas area names.


2005 ◽  
Vol 1281 ◽  
pp. 206-211
Author(s):  
Barbara Podda ◽  
Gianluigi Zanetti ◽  
Andrea Giachetti

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong Zhu ◽  
Yingfan Mao ◽  
Jun Chen ◽  
Yudong Qiu ◽  
Yue Guan ◽  
...  

AbstractTo explore the value of contrast-enhanced CT texture analysis in predicting isocitrate dehydrogenase (IDH) mutation status of intrahepatic cholangiocarcinomas (ICCs). Institutional review board approved this study. Contrast-enhanced CT images of 138 ICC patients (21 with IDH mutation and 117 without IDH mutation) were retrospectively reviewed. Texture analysis was performed for each lesion and compared between ICCs with and without IDH mutation. All textural features in each phase and combinations of textural features (p < 0.05) by Mann–Whitney U tests were separately used to train multiple support vector machine (SVM) classifiers. The classification generalizability and performance were evaluated using a tenfold cross-validation scheme. Among plain, arterial phase (AP), portal venous phase (VP), equilibrium phase (EP) and Sig classifiers, VP classifier showed the highest accuracy of 0.863 (sensitivity, 0.727; specificity, 0.885), with a mean area under the receiver operating characteristic curve of 0.813 in predicting IDH mutation in validation cohort. Texture features of CT images in portal venous phase could predict IDH mutation status of ICCs with SVM classifier preoperatively.


2016 ◽  
Vol 195 (4S) ◽  
Author(s):  
Vinay Duddalwar ◽  
Xuejun Zhang ◽  
Darryl Hwang ◽  
Steven Cen ◽  
Felix Yap ◽  
...  

Radiology ◽  
2015 ◽  
Vol 276 (3) ◽  
pp. 787-796 ◽  
Author(s):  
Taryn Hodgdon ◽  
Matthew D. F. McInnes ◽  
Nicola Schieda ◽  
Trevor A. Flood ◽  
Leslie Lamb ◽  
...  

2018 ◽  
Vol 29 (5) ◽  
pp. 2207-2217 ◽  
Author(s):  
Urs J. Muehlematter ◽  
Manoj Mannil ◽  
Anton S. Becker ◽  
Kerstin N. Vokinger ◽  
Tim Finkenstaedt ◽  
...  

2017 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Ali Abbasian Ardakani ◽  
Afshin Mohammadi ◽  
Akbar Gharbali ◽  
Aram Rostami

2014 ◽  
Vol 533 ◽  
pp. 415-420 ◽  
Author(s):  
Wei Fang Liu ◽  
Xu Wang ◽  
Hong Xia

This study investigated three-dimensional (3D) texture as a possible diagnostic marker of Alzheimers disease (AD). Methods: T1-weighted MRI of 18 AD patients, 18 Mild Cognitive Impairment (MCI) patients and 18 normal controls (NC) were selected.3D Texture parameters of the corpus callosum,including contrast, inverse difference moment , entropy, short run emphasis, long run emphasis, grey level nonuniformity, run length nonuniformity and fraction were extracted from the gray level co-occurrence matrix and run length matrix. Finally statistic significance was tested among three groups, and the correlations between parameters and Mini-Mental State Examination (MMSE) scores were calculated. Results: The results showed that the 3D texture features had significant differences (p<0.05) among three groups except grey level nonuniformity and run length nonuniformity that the difference was not significant (p>0.05) between MCI and NC or AD and MCI , and they were correlated with MMSE scores.Conclusions: 3D texture analysis can reflect the pathological changes of corpus callosum in patients with AD and MCI, and it may be helpful to AD early diagnosis.


Sign in / Sign up

Export Citation Format

Share Document