scholarly journals Chosen Ciphertext Secure Public Key Threshold Encryption Without Random Oracles

Author(s):  
Dan Boneh ◽  
Xavier Boyen ◽  
Shai Halevi
2018 ◽  
pp. 209-214 ◽  
Author(s):  
Fuchun Guo ◽  
Willy Susilo ◽  
Yi Mu

2010 ◽  
Vol 439-440 ◽  
pp. 1606-1611 ◽  
Author(s):  
Qi Xia ◽  
Chun Xiang Xu ◽  
Yong Yu

Liu et al. proposed the first certificateless signature scheme without random oracles in 2007. However, Xiong et al. showed that Liu et al.'s scheme is insecure against a malicious-but-passive KGC attack and proposed an improved scheme. In ISA 2009, Yuan et al. also proposed a new certificateless signature scheme without random oracles. Although they claimed that the two schemes are secure in the standard model, this paper shows that both Xiong et al.'s improved scheme and Yuan et al.'s new scheme are vulnerable to key replacement attack, where an adversary, obtaining a signature on a message and replacing the public key of a signer, can forge valid signatures on the same message under the replaced public key. We also give the corresponding modifications of the two schemes to resist key replacement attack.


2010 ◽  
Vol 21 (06) ◽  
pp. 1049-1063 ◽  
Author(s):  
YANLI REN ◽  
DAWU GU ◽  
SHUOZHONG WANG ◽  
XINPENGU ZHANG

In a proxy re-encryption scheme, a semi-trusted proxy converts a ciphertext for Alice into a ciphertext for Bob without seeing the underlying plaintext. A number of solutions have been proposed in public key settings. Hierarchical identity-based cryptography is a generalization of identity-based encryption that mirrors an organizational hierarchy, which allows a root private key generator to distribute the workload by delegating private key generation and identity authentication to lower-level private key generators. In this paper, we propose a hierarchical identity-based proxy re-encryption (HIBPRE) scheme which achieves IND-PrID-CCA2 security without random oracles. This is the first HIBPRE scheme up to now, and our scheme satisfies unidirectionality, non-interactivity and permits multiple re-encryptions.


2017 ◽  
Vol 41 ◽  
pp. 286-299
Author(s):  
Kazuki Yoneyama ◽  
Goichiro Hanaoka

Sign in / Sign up

Export Citation Format

Share Document