User Friendly Graphical Environment for Gait Optimization of the Humanoid Robot Rh-0

2005 ◽  
pp. 633-641 ◽  
Author(s):  
M. Arbulú ◽  
I. Prieto ◽  
D. Gutiérrez ◽  
L. Cabas ◽  
P. Staroverov ◽  
...  
2010 ◽  
Vol 07 (01) ◽  
pp. 157-182 ◽  
Author(s):  
HAO GU ◽  
MARCO CECCARELLI ◽  
GIUSEPPE CARBONE

In this paper, problems for an anthropomorphic robot arm are approached for an application in a humanoid robot with the specific features of cost oriented design and user-friendly operation. One DOF solution is proposed by using a suitable combination of gearing systems, clutches, and linkages. Models and dynamic simulations are used both for designing the system and checking the operation feasibility.


2020 ◽  
Vol 17 (03) ◽  
pp. 2050010
Author(s):  
Saeed Saeedvand ◽  
Hadi S. Aghdasi ◽  
Jacky Baltes

Although there are several popular and capable humanoid robot designs available in the kid-size range, they lack some important characteristics: affordability, being user-friendly, using a wide-angle camera, sufficient computational resources for advanced AI algorithms, and mechanical robustness and stability are the most important ones. Recent advances in 3D printer technology enables researchers to move from model to physical implementation relatively easy. Therefore, we introduce a novel fully 3D printed open platform humanoid robot design named ARC. In this paper, we discuss the mechanical structure and software architecture. We show the capabilities of the ARC design in a series of experimental evaluations.


2018 ◽  
Vol 40 (4) ◽  
pp. 407-424
Author(s):  
Tran Thien Huan ◽  
Ho Pham Huy Anh

This paper proposes a new way to optimize the biped walking gait design for biped robots that permits stable and robust stepping with pre-set foot lifting magnitude. The new meta-heuristic CFO-Central Force Optimization algorithm is initiatively applied to optimize the biped gait parameters as to ensure to keep biped robot walking robustly and steadily. The efficiency of the proposed method is compared with the GA-Genetic Algorithm, PSO-Particle Swarm Optimization and Modified Differential Evolution algorithm (MDE). The simulated and experimental results carried on the prototype small-sized humanoid robot demonstrate that the novel meta-heuristic CFO algorithm offers an efficient and stable walking gait for biped robots with respect to a pre-set of foot-lift height value.


2021 ◽  
Vol 14 ◽  
Author(s):  
Chongben Tao ◽  
Jie Xue ◽  
Zufeng Zhang ◽  
Feng Cao ◽  
Chunguang Li ◽  
...  

To improve the fast and stable walking ability of a humanoid robot, this paper proposes a gait optimization method based on a parallel comprehensive learning particle swarm optimizer (PCLPSO). Firstly, the key parameters affecting the walking gait of the humanoid robot are selected based on the natural zero-moment point trajectory planning method. Secondly, by changing the slave group structure of the PCLPSO algorithm, the gait training task is decomposed, and a parallel distributed multi-robot gait training environment based on RoboCup3D is built to automatically optimize the speed and stability of bipedal robot walking. Finally, a layered learning approach is used to optimize the turning ability of the humanoid robot. The experimental results show that the PCLPSO algorithm achieves a quickly optimal solution, and the humanoid robot optimized possesses a fast and steady gait and flexible steering ability.


2018 ◽  
Vol 6 (1) ◽  
pp. 35-61 ◽  
Author(s):  
Dimas Pristovani Riananda ◽  
Ardik Wijayanto ◽  
Ali Husein Alasiry ◽  
A. Subhan Khalilullah

Synthetic grass surface is a new rule in international robot soccer competition (RoboCup). The main issue in the development of the RoboCup competition today is about how to make a humanoid robot walk above the field of synthetic grass. Because of that, the humanoid robot needs a system that can be implemented into the walking algorithm. This paper describes how to maintain the stability of humanoid robot called EROS by using walking trajectory algorithm without a control system. The establishment of the walking trajectory system is combined with a process of landing optimization using deceleration and heel-strikes gait optimization. This system has been implemented into a humanoid robot with 52 cm of height and walking on synthetic grass with different speeds. By adding optimization, the robot walks more stable from 32% to 80% of stability. In the next research, the control system will be added to improve the stability.


Sign in / Sign up

Export Citation Format

Share Document