Microscopical Detection of Cell Death Processes During Scots Pine Zygotic Embryogenesis

Author(s):  
Jaana Vuosku ◽  
Suvi Sutela
2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Jaana Vuosku ◽  
Suvi Sutela ◽  
Johanna Kestilä ◽  
Anne Jokela ◽  
Tytti Sarjala ◽  
...  

2011 ◽  
Vol 109 (3) ◽  
pp. 391-400 ◽  
Author(s):  
Malin Abrahamsson ◽  
Silvia Valladares ◽  
Emma Larsson ◽  
David Clapham ◽  
Sara von Arnold

2006 ◽  
Vol 142 (3) ◽  
pp. 1027-1038 ◽  
Author(s):  
Jaana Vuosku ◽  
Anne Jokela ◽  
Esa Läärä ◽  
Mira Sääskilahti ◽  
Riina Muilu ◽  
...  

2019 ◽  
Vol 10 ◽  
Author(s):  
Jaana Vuosku ◽  
Riina Muilu-Mäkelä ◽  
Komlan Avia ◽  
Marko Suokas ◽  
Johanna Kestilä ◽  
...  

Author(s):  
Anne F. Bushnell ◽  
Sarah Webster ◽  
Lynn S. Perlmutter

Apoptosis, or programmed cell death, is an important mechanism in development and in diverse disease states. The morphological characteristics of apoptosis were first identified using the electron microscope. Since then, DNA laddering on agarose gels was found to correlate well with apoptotic cell death in cultured cells of dissimilar origins. Recently numerous DNA nick end labeling methods have been developed in an attempt to visualize, at the light microscopic level, the apoptotic cells responsible for DNA laddering.The present studies were designed to compare various tissue processing techniques and staining methods to assess the occurrence of apoptosis in post mortem tissue from Alzheimer's diseased (AD) and control human brains by DNA nick end labeling methods. Three tissue preparation methods and two commercial DNA nick end labeling kits were evaluated: the Apoptag kit from Oncor and the Biotin-21 dUTP 3' end labeling kit from Clontech. The detection methods of the two kits differed in that the Oncor kit used digoxigenin dUTP and anti-digoxigenin-peroxidase and the Clontech used biotinylated dUTP and avidinperoxidase. Both used 3-3' diaminobenzidine (DAB) for final color development.


Author(s):  
S. Trachtenberg ◽  
P.M. Steinert ◽  
B.L. Trus ◽  
A.C. Steven

During terminal differentiation of vertebrate epidermis, certain specific keratin intermediate filament (KIF) proteins are produced. Keratinization of the epidermis involves cell death and disruption of the cytoplasm, leaving a network of KIF embedded in an amorphous matrix which forms the outer horny layer known as the stratum corneum. Eventually these cells are shed (desquamation). Normally, the processes of differentiation, keratinization, and desquamation are regulated in an orderly manner. In psoriasis, a chronic skin disease, a hyperkeratotic stratum corneum is produced, resulting in abnormal desquamation of unusually large scales. In this disease, the normal KIF proteins are diminished in amount or absent, and other proteins more typical of proliferative epidermal cells are present. There is also evidence of proteolytic degradation of the KIF.


Author(s):  
Eric Hallberg ◽  
Lina Hansén

The antennal rudiments in lepidopterous insects are present as disks during the larval stage. The tubular double-walled antennal disk is present beneath the larval antenna, and its inner layer gives rise to the adult antenna during the pupal stage. The sensilla develop from a cluster of cells that are derived from one stem cell, which gives rise to both sensory and enveloping cells. During the morphogenesis of the sensillum these cells undergo major transformations, including cell death. In the moth Agrotis segetum the pupal stage lasts about 14 days (temperature, 25°C). The antennae, clearly seen from the exterior, were dissected and fixed according to standard procedures (3 % glutaraldehyde in 0.15 M cacaodylate buffer, followed by 1 % osmiumtetroxide in the same buffer). Pupae from day 1 to day 8, of both sexes were studied.


Sign in / Sign up

Export Citation Format

Share Document