System-Level 3D IC Cost Analysis and Design Exploration

Author(s):  
Xiangyu Dong ◽  
Yuan Xie
2020 ◽  
Author(s):  
Nandkumar Niture

The AI, deep learning and machine learning algorithms are gaining the ground in every application domain of information technology including information security. In formation security domain knows for traditional password management systems, auto-provisioning systems and user information management systems. There is another raising concern on the application and system level security with ransomware. On the existing systems cyber-attacks of Ransomware asking for ransom increasing every day. Ransomware is the class of malware where the goal is to gain the data through encryption mechanism and render back with the ransom. The ransomware attacks are mainly on the vulnerable systems which are exposed to the network with weak security measures. With the help of machine learning algorithms, the pattern of the attacks can be analyzed. Create or discuss a workaround solution of a machine learning model with combination of cryptographic algorithm which will enhance the effectiveness of the system response to the possible attacks. The other part of the problem, which is hard part to create an intelligence for the organizations for preventing the ransomware attacks with the help of intelligent system password management and intelligent account provisioning. In this paper I elaborate on the machine learning algorithms analysis for the intelligent ransomware detection problem, later part of this paper would be design of the algorithm.


2021 ◽  
Author(s):  
Tadahiro Kuroda ◽  
Wai-Yeung Yip

Synthesising fifteen years of research, this authoritative text provides a comprehensive treatment of two major technologies for wireless chip and module interface design, covering technology fundamentals, design considerations and tradeoffs, practical implementation considerations, and discussion of practical applications in neural network, reconfigurable processors, and stacked SRAM. It explains the design principles and applications of two near-field wireless interface technologies for 2.5-3D IC and module integration respectively, and describes system-level performance benefits, making this an essential resource for researchers, professional engineers and graduate students performing research in next-generation wireless chip and module interface design.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000254-000267 ◽  
Author(s):  
John Y. Xie ◽  
Hong Shi ◽  
Yuan Li ◽  
Zhe Li ◽  
Arif Rahman ◽  
...  

3D IC is the viable revolutionary technology that will enable system-level integration, miniaturization, optimal power management, increased data bandwidth, and eventually reduced system cost. Like any breakthrough technologies, it faces many challenges. Design methodology, integration technology, manufacturing process and new industrial ecosystem are the areas of focus. This paper will discuss these challenges and Altera's 3D integration development effort. 2.5D is an intermediate path to true 3D IC using silicon interposer and TSV (Through-Si-Via) stacking. The 2.5D stacking configuration offers different form factor, interconnect path, and thermal management options than monolithic packages, which could help to reduce system level power and thermal management pressure. It offers silicon level interconnect density, low inductive path and wide IO application. However, it's power delivery system (PDN) could be the bottleneck for the system to perform at the intended bandwidth and speed. Thus, the whole system, IC-Interposer-Package-PCB, must be considered holistically, and trade off study and compensation mechanism development are needed in such complex system level integration. There are many different 2.5D integration manufacturing flows currently under development. They can be categorized into two major flow options: Attaching interposer to substrate first, which can be called CoCoS (Chip on Chip on Substrate); or attaching device silicon to interposer first, which is also called CoWoS (Chip on Wafer on Substrate). The major challenges are in the areas of manufacturing process window and yield, thin wafer handling, testability and overall cost of the integration process. ,). This paper will discuss design consideration, manufacturability analysis, Logic/memory devices and silicon interposer interaction, and thermal management to enable the 2.5D integration. System level characterization and correlation with simulations are performed. The challenge of new supply-customer model and industrial ecosystem development associated with 2.5D integration will also be discussed.


Author(s):  
K. R. Anderson ◽  
A. Clark ◽  
D. Forgette ◽  
M. Devost ◽  
R. Okerson ◽  
...  

Current trends in engine design have pushed the state of the art regarding high power-to-weight ratio gasoline engines. Newly developed engine systems have a power-to-weight ratio near 1 hp per pound. The engine configuration presented herein makes it possible to package a large number of power producing pistons in a small volume, resulting in a power-to-weight ratio near 2 hp per pound, which has never before been realized in a production engine. The analysis and design of a lightweight two-stroke 6-sided in-plane polygon engine having a geometric compression ratio of 15.0, an actual compression ratio of 8.8, and a piston speed of 3500 ft/min are presented in this investigation. Typical results show that for a hexagonal engine with 2 in. diameter pistons and 1.25 in. stroke, a single piston displacement is 7.85 cubic in., while the total engine displacement is 47. 1 cubic in. Full power at 12,960 rpm at an air flow rate of 353 cubic feet per minute affords 0.444 cubic ft/min/hp for specific power. For an efficiency of 21%, the blower power is 168 hp. Our air-flow analysis shows that the power of the engine does not depend on the number of pistons, but rather on the volume of the gas-air mixture which passes through the engine. System level engineering of power output, kinematic modeling, air-flow modeling, efficiency, scavenging predictions, crankshaft sizing, and weight estimates are presented.


IEEE Micro ◽  
2009 ◽  
Vol 29 (4) ◽  
pp. 74-85 ◽  
Author(s):  
Michele Petracca ◽  
Benjamin G. Lee ◽  
Keren Bergman ◽  
Luca P. Carloni

2020 ◽  
Author(s):  
Nandkumar Niture

The AI, deep learning and machine learning algorithms are gaining the ground in every application domain of information technology including information security. In formation security domain knows for traditional password management systems, auto-provisioning systems and user information management systems. There is another raising concern on the application and system level security with ransomware. On the existing systems cyber-attacks of Ransomware asking for ransom increasing every day. Ransomware is the class of malware where the goal is to gain the data through encryption mechanism and render back with the ransom. The ransomware attacks are mainly on the vulnerable systems which are exposed to the network with weak security measures. With the help of machine learning algorithms, the pattern of the attacks can be analyzed. Create or discuss a workaround solution of a machine learning model with combination of cryptographic algorithm which will enhance the effectiveness of the system response to the possible attacks. The other part of the problem, which is hard part to create an intelligence for the organizations for preventing the ransomware attacks with the help of intelligent system password management and intelligent account provisioning. In this paper I elaborate on the machine learning algorithms analysis for the intelligent ransomware detection problem, later part of this paper would be design of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document