scholarly journals Category of Finite Dimensional Modules over an Orthosymplectic Lie Superalgebra: Small Rank Examples

Author(s):  
Caroline Gruson ◽  
Vera Serganova
Author(s):  
Nicoletta Cantarini ◽  
Fabrizio Caselli ◽  
Victor Kac

AbstractGiven a Lie superalgebra $${\mathfrak {g}}$$ g with a subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 , and a finite-dimensional irreducible $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 -module F, the induced $${\mathfrak {g}}$$ g -module $$M(F)={\mathcal {U}}({\mathfrak {g}})\otimes _{{\mathcal {U}}({\mathfrak {g}}_{\ge 0})}F$$ M ( F ) = U ( g ) ⊗ U ( g ≥ 0 ) F is called a finite Verma module. In the present paper we classify the non-irreducible finite Verma modules over the largest exceptional linearly compact Lie superalgebra $${\mathfrak {g}}=E(5,10)$$ g = E ( 5 , 10 ) with the subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 of minimal codimension. This is done via classification of all singular vectors in the modules M(F). Besides known singular vectors of degree 1,2,3,4 and 5, we discover two new singular vectors, of degrees 7 and 11. We show that the corresponding morphisms of finite Verma modules of degree 1,4,7, and 11 can be arranged in an infinite number of bilateral infinite complexes, which may be viewed as “exceptional” de Rham complexes for E(5, 10).


2010 ◽  
Vol 17 (03) ◽  
pp. 525-540 ◽  
Author(s):  
Xiaoning Xu ◽  
Yongzheng Zhang ◽  
Liangyun Chen

A new family of finite-dimensional modular Lie superalgebras Γ is defined. The simplicity and generators of Γ are studied and an explicit description of the derivation superalgebra of Γ is given. Moreover, it is proved that Γ is not isomorphic to any known Lie superalgebra of Cartan type.


Author(s):  
Nikolay Grantcharov ◽  
◽  
Vera Serganova ◽  

We describe all blocks of the category of finite-dimensional q(3)-supermodules by providing their extension quivers. We also obtain two general results about the representation of q(n): we show that the Ext quiver of the standard block of q(n) is obtained from the principal block of q(n-1) by identifying certain vertices of the quiver and prove a virtual BGG-reciprocity for q(n). The latter result is used to compute the radical filtrations of q(3) projective covers.


2012 ◽  
Vol 148 (5) ◽  
pp. 1561-1592 ◽  
Author(s):  
Brian D. Boe ◽  
Jonathan R. Kujawa ◽  
Daniel K. Nakano

AbstractLet ${\Xmathfrak g}={\Xmathfrak g}_{\zerox }\oplus {\Xmathfrak g}_{\onex }$ be a classical Lie superalgebra and let ℱ be the category of finite-dimensional ${\Xmathfrak g}$-supermodules which are completely reducible over the reductive Lie algebra ${\Xmathfrak g}_{\zerox }$. In [B. D. Boe, J. R. Kujawa and D. K. Nakano, Complexity and module varieties for classical Lie superalgebras, Int. Math. Res. Not. IMRN (2011), 696–724], we demonstrated that for any module M in ℱ the rate of growth of the minimal projective resolution (i.e. the complexity of M) is bounded by the dimension of ${\Xmathfrak g}_{\onex }$. In this paper we compute the complexity of the simple modules and the Kac modules for the Lie superalgebra $\Xmathfrak {gl}(m|n)$. In both cases we show that the complexity is related to the atypicality of the block containing the module.


2016 ◽  
Vol 68 (2) ◽  
pp. 258-279 ◽  
Author(s):  
Lucas Calixto ◽  
Adriano Moura ◽  
Alistair Savage

AbstractAn equivariant map queer Lie superalgebra is the Lie superalgebra of regular maps from an algebraic variety (or scheme) X to a queer Lie superalgebra q that are equivariant with respect to the action of a finite group Γ acting on X and q. In this paper, we classify all irreducible finite-dimensional representations of the equivariant map queer Lie superalgebras under the assumption that Γ is abelian and acts freely on X. We show that such representations are parameterized by a certain set of Γ-equivariant finitely supported maps from X to the set of isomorphism classes of irreducible finite-dimensional representations of q. In the special case where X is the torus, we obtain a classification of the irreducible finite-dimensional representations of the twisted loop queer superalgebra.


2018 ◽  
Vol 33 (20) ◽  
pp. 1850117 ◽  
Author(s):  
Shinji Koshida

We propose a generalization of Schramm–Loewner evolution (SLE) that has internal degrees of freedom described by an affine Lie superalgebra. We give a general formulation of SLE corresponding to representation theory of an affine Lie superalgebra whose underlying finite-dimensional Lie superalgebra is basic classical type, and write down stochastic differential equations on internal degrees of freedom in case that the corresponding affine Lie superalgebra is [Formula: see text]. We also demonstrate computation of local martingales associated with the solution from a representation of [Formula: see text].


2009 ◽  
Vol 16 (02) ◽  
pp. 309-324 ◽  
Author(s):  
Wenjuan Xie ◽  
Yongzheng Zhang

Let 𝔽 be an algebraically closed field and char 𝔽 = p > 3. In this paper, we determine the second cohomology group of the finite-dimensional Contact superalgebra K(m,n,t).


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Jing Yu ◽  
Jingwei Han

Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlinearization technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super Hamiltonian system. And its Lax representation andr-matrix are also given in this paper.


Sign in / Sign up

Export Citation Format

Share Document