Molecular Properties of Paired Helical Filaments and Senile Plaque Amyloid Fibers in Alzheimer’s Disease

Author(s):  
Dennis J. Selkoe ◽  
Carmela Abraham ◽  
C. G. Rasool
Author(s):  
J. Metuzals ◽  
D. F. Clapin ◽  
V. Montpetit

Information on the conformation of paired helical filaments (PHF) and the neurofilamentous (NF) network is essential for an understanding of the mechanisms involved in the formation of the primary lesions of Alzheimer's disease (AD): tangles and plaques. The structural and chemical relationships between the NF and the PHF have to be clarified in order to discover the etiological factors of this disease. We are investigating by stereo electron microscopic and biochemical techniques frontal lobe biopsies from patients with AD and squid giant axon preparations. The helical nature of the lesion in AD is related to pathological alterations of basic properties of the nervous system due to the helical symmetry that exists at all hierarchic structural levels in the normal brain. Because of this helical symmetry of NF protein assemblies and PHF, the employment of structure reconstruction techniques to determine the conformation, particularly the handedness of these structures, is most promising. Figs. 1-3 are frontal lobe biopsies.


Author(s):  
D.F. Clapin ◽  
V.J.A. Montpetit

Alzheimer's disease is characterized by the accumulation of abnormal filamentous proteins. The most important of these are amyloid fibrils and paired helical filaments (PHF). PHF are located intraneuronally forming bundles called neurofibrillary tangles. The designation of these structures as "tangles" is appropriate at the light microscopic level. However, localized domains within individual tangles appear to demonstrate a regular spacing which may indicate a liquid crystalline phase. The purpose of this paper is to present a statistical geometric analysis of PHF packing.


Author(s):  
V.J.A. Montpetit ◽  
S. Dancea ◽  
S.W. French ◽  
D.F. Clapin

A continuing problem in Alzheimer research is the lack of a suitable animal model for the disease. The absence of neurofibrillary tangles of paired helical filaments is the most critical difference in the processes by which the central nervous system ages in most species other than man. However, restricting consideration to single phenomena, one may identify animal models for specific aspects of Alzheimer's disease. Abnormal fibers resembling PHF have been observed in dorsal root ganglia (DRG) neurons of rats in a study of chronic ethanol intoxication and spontaneously in aged rats. We present in this report evidence that PHF-like filaments occur in ethanol-treated rats of young age. In control animals lesions similar in some respects to our observations of cytoskeletal pathology in pyridoxine induced neurotoxicity were observed.Male Wistar BR rats (Charles River Labs) weighing 350 to 400 g, were implanted with a single gastrostomy cannula and infused with a liquid diet containing 30% of total calories as fat plus ethanol or isocaloric dextrose.


2018 ◽  
Vol 15 (7) ◽  
pp. 610-617 ◽  
Author(s):  
Huifeng Zhang ◽  
Dan Liu ◽  
Huanhuan Huang ◽  
Yujia Zhao ◽  
Hui Zhou

Background: β-amyloid (Aβ) accumulates abnormally to senile plaque which is the initiator of Alzheimer's disease (AD). As one of the Aβ-degrading enzymes, Insulin-degrading enzyme (IDE) remains controversial for its protein level and activity in Alzheimer's brain. Methods: The electronic databases PubMed, EMBASE, The Cochrane Library, OVID and Sinomed were systemically searched up to Sep. 20th, 2017. And the published case-control or cohort studies were retrieved to perform the meta-analysis. Results: Seven studies for IDE protein level (AD cases = 293; controls = 126), three for mRNA level (AD cases = 138; controls = 81), and three for enzyme activity (AD cases = 123; controls = 75) were pooling together. The IDE protein level was significantly lower in AD cases than in controls (SMD = - 0.47, 95% CI [-0.69, -0.24], p < 0.001), but IDE mRNA and enzyme activity had no significant difference (SMD = 0.02, 95% CI [-0.40, 0.43] and SMD = 0.06, 95% CI [-0.41, 0.53] respectively). Subgroup analyses found that IDE protein level was decreased in both cortex and hippocampus of AD cases (SMD = -0.43, 95% CI [-0.71, -0.16], p = 0.002 and SMD = -0.53, 95% CI [-0.91, -0.15], p = 0.006 respectively). However, IDE mRNA was higher in cortex of AD cases (SMD = 0.71, 95% CI [0.14, 1.29], p = 0.01), not in hippocampus (SMD = -0.26, 95% CI [-0.58, 0.06]). Conclusions: Our results indicate that AD patients may have lower IDE protease level. Further relevant studies are still needed to verify whether IDE is one of the factors affecting Aβ abnormal accumulation and throw new insights for AD detection or therapy.


2020 ◽  
Vol 20 (9) ◽  
pp. 770-781 ◽  
Author(s):  
Poornima Sharma ◽  
Anjali Sharma ◽  
Faizana Fayaz ◽  
Sharad Wakode ◽  
Faheem H. Pottoo

Alzheimer’s disease (AD) is the most prevalent and severe neurodegenerative disease affecting more than 0.024 billion people globally, more common in women as compared to men. Senile plaques and amyloid deposition are among the main causes of AD. Amyloid deposition is considered as a central event which induces the link between the production of β amyloid and vascular changes. Presence of numerous biomarkers such as cerebral amyloid angiopathy, microvascular changes, senile plaques, changes in white matter, granulovascular degeneration specifies the manifestation of AD while an aggregation of tau protein is considered as a primary marker of AD. Likewise, microvascular changes, activation of microglia (immune defense system of CNS), amyloid-beta aggregation, senile plaque and many more biomarkers are nearly found in all Alzheimer’s patients. It was seen that 70% of Alzheimer’s cases occur due to genetic factors. It has been reported in various studies that apolipoprotein E(APOE) mainly APOE4 is one of the major risk factors for the later onset of AD. Several pathological changes also occur in the white matter which include dilation of the perivascular space, loss of axons, reactive astrocytosis, oligodendrocytes and failure to drain interstitial fluid. In this review, we aim to highlight the various biological signatures associated with the AD which may further help in discovering multitargeting drug therapy.


2020 ◽  
Vol 20 (12) ◽  
pp. 1059-1073 ◽  
Author(s):  
Ahmad Abu Turab Naqvi ◽  
Gulam Mustafa Hasan ◽  
Md. Imtaiyaz Hassan

Microtubule-associated protein tau is involved in the tubulin binding leading to microtubule stabilization in neuronal cells which is essential for stabilization of neuron cytoskeleton. The regulation of tau activity is accommodated by several kinases which phosphorylate tau protein on specific sites. In pathological conditions, abnormal activity of tau kinases such as glycogen synthase kinase-3 &#946; (GSK3&#946;), cyclin-dependent kinase 5 (CDK5), c-Jun N-terminal kinases (JNKs), extracellular signal-regulated kinase 1 and 2 (ERK1/2) and microtubule affinity regulating kinase (MARK) lead to tau hyperphosphorylation. Hyperphosphorylation of tau protein leads to aggregation of tau into paired helical filaments like structures which are major constituents of neurofibrillary tangles, a hallmark of Alzheimer’s disease. In this review, we discuss various tau protein kinases and their association with tau hyperphosphorylation. We also discuss various strategies and the advancements made in the area of Alzheimer&#039;s disease drug development by designing effective and specific inhibitors for such kinases using traditional in vitro/in vivo methods and state of the art in silico techniques.


Author(s):  
Zeba Mueed ◽  
Pankaj Kumar Rai ◽  
Mohammad A. Kamal ◽  
Nitesh Kumar Poddar

Alzheimer’s disease (AD), characterized by abnormally phosphorylated tau, paired helical filaments (PHFs), neurofibrillary tangles (NFTs), deregulated mammalian target of rapamycin (mTOR), Aβ deposits, is a multifactorial disease with sleep disorders being one of the causative agents. Therefore, we have reviewed the literature and have tried to decode the existence of positive feedback, reciprocal and a bidirectional relationship allying between sleep disturbances and AD. Much light has been thrown on the role of tau pathology and amyloid pathology in sleep pathology and its association with AD pathology. We have also discussed the role of melatonin in regulating sleep disorders and AD. The neuroprotective action of melatonin via inhibiting tau hyperphosphorylation and Aβ deposition has also been pondered upon. Moreover, astrocytes involvement in aggravating AD has also been highlighted in this review. Several therapeutic approaches aimed at improving both sleep disorders and AD have been duly discussed such as administration of antidepressants and antihistamines, immunotherapy, metal chelators, melatonin supplementation, light therapy and physical activity. Despite consistent efforts, the complete etiology concerning sleep disorder and AD is still unclear. Therefore, further research is needed to unravel the mechanism involved and also to develop strategies that may help in obstructing AD in its preclinical stage.


2021 ◽  
Author(s):  
Ralf Schober ◽  
Isabel Hilbrich ◽  
Carsten Jäger ◽  
Max Holzer

Sign in / Sign up

Export Citation Format

Share Document