scholarly journals Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram

2020 ◽  
pp. 311-453
Author(s):  
Reinhard Stock

AbstractThis review will be concerned with our knowledge of extended matter under the governance of strong interaction, in short: QCD matter. Strictly speaking, the hadrons are representing the first layer of extended QCD architecture. In fact we encounter the characteristic phenomena of confinement as distances grow to the scale of 1 fm (i.e. hadron size): loss of the chiral symmetry property of the elementary QCD Lagrangian via non-perturbative generation of “massive” quark and gluon condensates, that replace the bare QCD vacuum. However, given such first experiences of transition from short range perturbative QCD phenomena (jet physics etc.), toward extended, non perturbative QCD hadron structure, we shall proceed here to systems with dimensions far exceeding the force range: matter in the interior of heavy nuclei, or in neutron stars, and primordial matter in the cosmological era from electro-weak decoupling (10−12 s) to hadron formation (0.5 ⋅ 10−5 s). This primordial matter, prior to hadronization, should be deconfined in its QCD sector, forming a plasma (i.e. color conducting) state of quarks and gluons: the Quark Gluon Plasma (QGP).

Universe ◽  
2019 ◽  
Vol 5 (5) ◽  
pp. 98
Author(s):  
Astrid Morreale

Quarks and gluons are the fundamental constituents of nucleons. Their interactions rather than their mass are responsible for 99 % of the mass of all visible matter in the universe. Measuring the fundamental properties of matter has had a large impact on our understanding of the nucleon structure and it has given us decades of research and technological innovation. Despite the large number of discoveries made, many fundamental questions remain open and in need of a new and more precise generation of measurements. The future Electron Ion Collider (EIC) will be a machine dedicated to hadron structure research. It will study the content of protons and neutrons in a largely unexplored regime in which gluons are expected to dominate and eventually saturate. While the EIC will be the machine of choice to quantify this regime, recent surprising results from the heavy ion community have begun to exhibit similar signatures as those expected from a regime dominated by gluons. Many of the heavy ion results that will be discussed in this document highlight the kinematic limitations of hadron–hadron and hadron–nucleus collisions. The reliability of using as a reference proton–proton (pp) and proton–ion (pA) collisions to quantify and disentangle vacuum and Cold Nuclear Matter (CNM) effects from those proceeding from a Quark Gluon Plasma (QGP) may be under question. A selection of relevant pp and pA results which highlight the need of an EIC will be presented.


2007 ◽  
Vol 16 (03) ◽  
pp. 643-659 ◽  
Author(s):  
JOHN W. HARRIS

This presentation is given in honor of Walter Greiner's 70th birthday, in recognition of the pioneering work of his "Frankfurt School" and their contributions to the field of heavy ion physics. Ultra-relativistic collisions of heavy nuclei at the Relativistic Heavy Ion Collider (RHIC) form an extremely hot system at energy densities greater than 5 GeV/fm3, where normal hadrons cannot exist. Upon rapid cooling of the system to a temperature T ~ 175 MeV and vanishingly small baryo-chemical potential, hadrons coalesce from quarks at the quark-hadron phase boundary predicted by lattice QCD. A large amount of collective (elliptic) flow at the quark level provides evidence for strong pressure gradients in the initial partonic stage of the collision when the system is dense and highly interacting prior to coalescence into hadrons. The suppression of both light (u,d,s) and heavy (c,b) hadrons at large transverse momenta, that form from fragmentation of hard-scattered partons, and the quenching of di-jets provide evidence for extremely large energy loss of partons as they attempt to propagate through the dense, strongly-coupled, colored medium created at RHIC.


2016 ◽  
Vol 31 (28n29) ◽  
pp. 1645023 ◽  
Author(s):  
Dmitri E. Kharzeev

QCD possesses a compact gauge group, and this implies a non-trivial topological structure of the vacuum. In this contribution to the Gribov-85 Memorial volume, we first discuss the origin of Gribov copies and their interpretation in terms of fluctuating topology in the QCD vacuum. We then describe the recent work with E. Levin that links the confinement of gluons and color screening to the fluctuating topology, and discuss implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.


1997 ◽  
Vol 12 (08) ◽  
pp. 1431-1464 ◽  
Author(s):  
Agustin Nieto

Recent developments of perturbation theory at finite temperature based on effective field theory methods are reviewed. These methods allow the contributions from the different scales to be separated and the perturbative series to be reorganized. The construction of the effective field theory is shown in detail for ϕ4 theory and QCD. It is applied to the evaluation of the free energy of QCD at order g5 and the calculation of the g6 term is outlined. Implications for the application of perturbative QCD to the quark–gluon plasma are also discussed.


2011 ◽  
Vol 83 (3) ◽  
Author(s):  
Jiunn-Wei Chen ◽  
Jian Deng ◽  
Hui Dong ◽  
Qun Wang

Sign in / Sign up

Export Citation Format

Share Document