hadron structure
Recently Published Documents


TOTAL DOCUMENTS

246
(FIVE YEARS 14)

H-INDEX

24
(FIVE YEARS 2)

Author(s):  
N. A. Abdulov ◽  
A. Bacchetta ◽  
S. Baranov ◽  
A. Bermudez Martinez ◽  
V. Bertone ◽  
...  

AbstractA common library, TMDlib2, for Transverse-Momentum-Dependent distributions (TMDs) and unintegrated parton distributions (uPDFs) is described, which allows for easy access of commonly used TMDs and uPDFs, providing a three-dimensional (3D) picture of the partonic structure of hadrons. The tool TMDplotter allows for web-based plotting of distributions implemented in TMDlib2, together with collinear pdfs as available in LHAPDF.


2021 ◽  
Vol 57 (2) ◽  
Author(s):  
Konstantin Ottnad

AbstractExcited state contributions represent a formidable challenge for hadron structure calculations in lattice QCD. For physical systems that exhibit an exponential signal-to-noise problem they often hinder the extraction of ground state matrix elements, introducing a major source of systematic error in lattice calculations of such quantities. The development of methods to treat the contribution of excited states and the current status of related lattice studies are reviewed with focus on nucleon structure calculations that are notoriously affected by excited state contamination.


2020 ◽  
Vol 29 (08) ◽  
pp. 2030006 ◽  
Author(s):  
S. J. Brodsky ◽  
V. D. Burkert ◽  
D. S. Carman ◽  
J. P. Chen ◽  
Z.-F. Cui ◽  
...  

The topical workshop Strong QCD from Hadron Structure Experiments took place at Jefferson Lab from November 6–9, 2019. Impressive progress in relating hadron structure observables to the strong QCD mechanisms has been achieved from the ab initio QCD description of hadron structure in a diverse array of methods in order to expose emergent phenomena via quasi-particle formation. The wealth of experimental data and the advances in hadron structure theory make it possible to gain insight into strong interaction dynamics in the regime of large quark–gluon coupling (the strong QCD regime), which will address the most challenging problems of the Standard Model on the nature of the dominant part of hadron mass, quark–gluon confinement, and the emergence of the ground and excited state hadrons, as well as atomic nuclei, from QCD. This workshop aimed to develop plans and to facilitate the future synergistic efforts between experimentalists, phenomenologists, and theorists working on studies of hadron spectroscopy and structure with the goal to connect the properties of hadrons and atomic nuclei available from data to the strong QCD dynamics underlying their emergence from QCD. These results pave the way for a future breakthrough extension in the studies of QCD with an Electron–Ion Collider in the U.S.


2020 ◽  
Vol 35 (11n12) ◽  
pp. 2030006 ◽  
Author(s):  
Huey-Wen Lin

In this paper, I review recent progress in lattice-QCD calculations of hadron structure with an emphasis on nucleon structure. A wide range of nucleon observables are being studied in modern lattice calculations, and important progress has been made at physical pion mass, including the spin decomposition of the nucleon and the Bjorken-[Formula: see text] dependence of hadron structure. Challenges and perspectives for future lattice hadron-structure calculations will be discussed.


2020 ◽  
pp. 311-453
Author(s):  
Reinhard Stock

AbstractThis review will be concerned with our knowledge of extended matter under the governance of strong interaction, in short: QCD matter. Strictly speaking, the hadrons are representing the first layer of extended QCD architecture. In fact we encounter the characteristic phenomena of confinement as distances grow to the scale of 1 fm (i.e. hadron size): loss of the chiral symmetry property of the elementary QCD Lagrangian via non-perturbative generation of “massive” quark and gluon condensates, that replace the bare QCD vacuum. However, given such first experiences of transition from short range perturbative QCD phenomena (jet physics etc.), toward extended, non perturbative QCD hadron structure, we shall proceed here to systems with dimensions far exceeding the force range: matter in the interior of heavy nuclei, or in neutron stars, and primordial matter in the cosmological era from electro-weak decoupling (10−12 s) to hadron formation (0.5 ⋅ 10−5 s). This primordial matter, prior to hadronization, should be deconfined in its QCD sector, forming a plasma (i.e. color conducting) state of quarks and gluons: the Quark Gluon Plasma (QGP).


Sign in / Sign up

Export Citation Format

Share Document