Adversarial learning stability has an important influence on the generated image quality and convergence process in generative adversarial networks (GANs). Training dataset (real data) noise and the balance of game players have an impact on adversarial learning stability. In the gradient backpropagation of the discriminator, the noise samples increase the gradient variance. It can increase the uncertainty in the network convergence progress and affect stability. In the two-player zero-sum game, the game ability of the generator and discriminator is unbalanced. Generally, the game ability of the generator is weaker than that of the discriminator, which affects the stability. To improve the stability, an antinoise learning and coalitional game generative adversarial network (ANL-CG GAN) is proposed, which achieves this goal through the following two strategies. (i) In the real data loss function of the discriminator, an effective antinoise learning method is designed, which can improve the gradient variance and network convergence uncertainty. (ii) In the zero-sum game, a generator coalitional game module is designed to enhance its game ability, which can improve the balance between the generator and discriminator via a coalitional game strategy. To verify the performance of this model, the generated results of the designed GAN and other GAN models in CELEBA and CIFAR10 are compared and analyzed. Experimental results show that the novel GAN can improve adversarial learning stability, generate image quality, and reduce the number of training epochs.