control packet
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 33)

H-INDEX

8
(FIVE YEARS 2)

Author(s):  
Patil Yogita Dattatraya ◽  
◽  
Jayashree Agarkhed ◽  
Siddarama Patil

Cluster-based protocols are best for applications that require reliability and a continuous functioning environment with a sustainable lifetime of WSN. The dynamic nature of the sensor node makes energy conservation a challenging issue. Sensor node scheduled based on sensing error for energy conservation compromise the accuracy of prediction. The high data accuracy achieved using a single duty cycle controller at each node with compromised throughput and increased routing overhead. Duty Cycle Controller managing a great number of control messages at the network level leads to control packet interference with data packet transmission, increasing packet drop and minimizing throughput. Also, the single-duty cycle controller at the network level leads to increased control overhead. The proposed multilevel cluster-based approach focuses on the appropriate cluster design, selection of cluster head, and sensor nodes scheduling based on sensing error. The proposed method applies a multi-duty cycle controller at each cluster level, and control messages handled are related to nodes in a cluster. Thus has less interference and packet drop leading to maximum throughput than existing methods. The simulation results demonstrated that the proposed method with sensor nodes scheduled at individual cluster levels using a multi-duty cycle controller exhibited improved network lifetime, throughput, and reduced energy consumption compared with the state-of-the-art techniques.


2021 ◽  
Vol 10 (3) ◽  
pp. 57
Author(s):  
Mohammed Osman ◽  
Josep Mangues-Bafalluy

Software-defined networking generally assumes ideal control channels between controller and network nodes. This may not be the case in challenged environments that are becoming more common due to dense and reduced-coverage 5G deployments and use cases requiring cost-effective wireless transport networks. In this paper, we evaluate the impact on network performance of unreliable controller-to-node communication channels, propose a hybrid SDN (hSDN) solution that switches between centralized and distributed operational modes depending on network conditions, and evaluate this solution under a variety of network scenarios (e.g., link impairments or packet loss ratios) designed to assess its operational limits. The results show that the proposed solution substantially improved the aggregated throughput, particularly when control channel packet loss ratios increased, while only showing a slight increase in average latency (e.g., 28% throughput improvement for 20% control packet losses). This enables network operation in hard conditions under which a canonical centralized SDN control would result in a nonoperational network.


2021 ◽  
Author(s):  
Diniesh VC ◽  
Murugesan G

Abstract Mobile wireless sensor networks (MWSNs) have become a foremost solution in many emerging applications both in industry and academia. Moreover, considering the mobile node in WSN is a challenging task to designing efficient communication protocols, specifically at a medium access control (MAC) layer. Most of the existing protocols consider only for static and slow mobility. To meet with future MIoT applications, in this paper we propose Enhanced Energy Efficient Mobility aware MAC (EMM-MAC) protocol. Our EMM-MAC protocol consists of 3 contributions i) static synchronization and mobility handling phase to support both environments, ii) By using queue length-based channel access priority for static nodes, and iii) the combined highest signal strength and node status-based channel access priority for mobile nodes without any control packet overhead. The simulation results verify that EMM-MAC yields a notable improvement in the average power consumption, packet latency, and packet delivery ratio performances against the well-known mobility-aware MAC protocols under different mobility models and environments.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1484
Author(s):  
Yunyoung Choi ◽  
Jaehyung Park ◽  
Jiwon Jung ◽  
Younggoo Kwon

In home and building automation applications, wireless sensor devices need to be connected via unreliable wireless links within a few hundred milliseconds. Routing protocols in Low-power and Lossy Networks (LLNs) need to support reliable data transmission with an energy-efficient manner and short routing convergence time. IETF standardized the Point-to-Point RPL (P2P-RPL) routing protocol, in which P2P-RPL propagates the route discovery messages over the whole network. This leads to significant routing control packet overhead and a large amount of energy consumption. P2P-RPL uses the trickle algorithm to control the transmission rate of routing control packets. The non-deterministic message suppression nature of the trickle algorithm may generate a sub-optimal routing path. The listen-only period of the trickle algorithm may lead to a long network convergence time. In this paper, we propose Collision Avoidance Geographic P2P-RPL, which achieves energy-efficient P2P data delivery with a fast routing request procedure. The proposed algorithm uses the location information to limit the network search space for the desired route discovery to a smaller location-constrained forwarding zone. The Collision Avoidance Geographic P2P-RPL also dynamically selects the listen-only period of the trickle timer algorithm based on the transmission priority related to geographic position information. The location information of each node is obtained from the Impulse-Response Ultra-WideBand (IR-UWB)-based cooperative multi-hop self localization algorithm. We implement Collision Avoidance Geographic P2P-RPL on Contiki OS, an open-source operating system for LLNs and the Internet of Things. The performance results show that the Collision Avoidance Geographic P2P-RPL reduced the routing control packet overheads, energy consumption, and network convergence time significantly. The cooperative multi-hop self localization algorithm improved the practical implementation characteristics of the P2P-RPL protocol in real world environments. The collision avoidance algorithm using the dynamic trickle timer increased the operation efficiency of the P2P-RPL under various wireless channel conditions with a location-constrained routing space.


Author(s):  
K. Divya ◽  
◽  
B. Srinivasan

MANETs gained popularity due to various notable features like dynamic topology, rapid setup, multihop data transmission, and so on. These prominent features make MANETs suitable for many real-time applications like environmental monitoring, disaster management, and covert and combat operations. Moreover, MANETs can also be integrated with emerging technologies like cloud computing, IoT, and machine learning algorithms to achieve the vision of Industry 4.0. All MANET-based sensitive real time applications require secure and reliable data transmission that must meet the required QoS. In MANET, achieving secure and energy-efficient data transmission is a challenging task. )e main strength of the proposed protocol is that it considers multiple factors like congestion control, packet loss reduction, malicious node detection, and secure data transmission to intensify the MANET’s QoS. The performance of the proposed protocol is analyzed through the simulation in NS2.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3295
Author(s):  
Woonghee Lee

In the last ten years, supported by the advances in technologies for unmanned aerial vehicles (UAVs), UAVs have developed rapidly and are utilized for a wide range of applications. To operate UAVs safely, by exchanging control packets continuously, operators should be able to monitor UAVs in real-time and deal with any problems immediately. However, due to any networking problems or unstable wireless communications, control packets can be lost or transmissions can be delayed, which causes the unstable drone control. To overcome this limitation, in this paper, we propose MuTran for enabling reliable UAV control. MuTran considers the packet type and duplicates only control packets, not data packets. After that, MuTran transmits the original and duplicate packets through multiple protocols and paths to improve the reliability of control packet transmissions. We designed MuTran and conducted a lot of theoretical analyses to demonstrate the validity of MuTran and analyze it from various aspects. We implemented MuTran on real devices and evaluated MuTran using the devices. We conducted experiments to verify the limitations of the existing systems and demonstrate that control packets can be transmitted more stably by using MuTran. Through the analysis and experimental results, we confirmed that MuTran reduces the control packet transfer delay, which improves the reliability and stability of controlling UAVs.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2791
Author(s):  
Woonghee Lee ◽  
Joon Yeop Lee ◽  
Hyeontae Joo ◽  
Hwangnam Kim

Recently, unmanned aerial vehicles (UAVs) have been applied to various applications. In order to perform repetitive and accurate tasks with a UAV, it is more efficient for the operator to perform the tasks through an integrated management program rather than controlling the UAVs one by one through a controller. In this environment, control packets must be reliably delivered to the UAV to perform missions stably. However, wireless communication is at risk of packet loss or packet delay. Typical network communications can respond to situations in which packets are lost by retransmitting lost packets. However, in the case of UAV control, delay due to retransmission is fatal, so control packet loss and delay should not occur. As UAVs move quickly, there is a high risk of accidents if control packets are lost or delayed. In order to stably control a UAV by transmitting control messages, we propose a control packet transmission scheme, ConClone. ConClone replicates control packets and then transmits them over multiple network connections to increase the probability of successful control packet transmission. We implemented ConClone using real equipment, and we verified its performance through experiments and theoretical analysis.


Author(s):  
Bonu Satish Kumar , Et. al.

While its advancement inside MANETs, the AODV routing protocol convention has been and stays a powerful and gainful examination protocol, with association with its course Active Route Timeout (ART), AODV utilizes a predictable worth that demonstrates the time and the course which may stay dynamic in the directing table. A long period of the course might be chosen powerfully, dependably through the estimation, as opposed to reliable worth. For this reason, a Fuzzy rationale framework is utilized to procure the versatile qualities for ART dependent on the transmitter conditions and interceding hubs.As indicated by the pre-essentials of the International Engineering Task Force (IETF), we shouldn't be taking stil qualities in the powerful atmosphere. Subsequently, ART's tweaking of turncoat esteems is accomplished by applies fluffy principles on the info factors hop-count, Sent Control Packet, and Nodes Number. AODV convention yield is assessed after the utilization of Fuzzy based methodology. The proficiency of AODV and FBARTAODV Routing Protocols for Mobile Ad Hoc Networks will be examined with results. In this paper we give outcome show so as to the FBARTAODV perform enhanced compared to the in progress AODV.


Sign in / Sign up

Export Citation Format

Share Document