Inverse Spectral problem for the Sturm-Liouville Operator with Eigenvalue Parameter Dependent Boundary Conditions

Author(s):  
M. V. Chugunova
Author(s):  
Н.Ф. Валеев ◽  
Ю.В. Мартынова ◽  
Я.Т. Султанаев

Исследуется модельная обратная спектральная задача для оператора Штурма-Лиувилля на геометрическом графе. Суть данной задачи состоит в восстановлении $N$ параметров граничных условий по $N$ собственным значениям. Установлено, что эта задача обладает свойством монотонной зависимости собственных значений от параметров граничных условий. Поставленная задача сведена к многопараметрической обратной спектральной задаче для оператора в конечномерном пространстве. Предложен новый алгоритм численного решения рассматриваемой задачи. A model inverse spectral problem for the Sturm-Liouville operator on a geometric graph is studied. This problem consists in finding $N$ parameters of the boundary conditions using its $N$ known eigenvalues. It is shown that the problem under consideration possess the property of a monotonic dependence of its eigenvalues on the parameters of the boundary conditions. This problem is reduced to a multiparameter inverse spectral problem for the operator in a finite-dimensional space. A new algorithm for the numerical solution of this problem is proposed.


2021 ◽  
Vol 51 ◽  
pp. 18-30
Author(s):  
Milenko Pikula ◽  
Dragana Nedić ◽  
Ismet Kalco ◽  
Ljiljanka Kvesić

This paper is dedicated to solving of the direct and inverse spectral problem for Sturm Liouville type of operator with constant delay from 𝜋/2 to 𝜋, non-zero initial function and Robin’s boundary conditions. It has been proved that two series of eigenvalues unambiguously define the following parameters: delay, coefficients of delay within boundary conditions, the potential on the segment from the point of delay to the right-hand side of the distance and the product of the starting function and potential from the left end of the distance to the delay point.


2012 ◽  
Vol 2012 ◽  
pp. 1-23 ◽  
Author(s):  
I. Dehghani Tazehkand ◽  
A. Jodayree Akbarfam

We study an inverse spectral problem for the Sturm-Liouville operator on a three-star graph with the Dirichlet and Robin boundary conditions in the boundary vertices and matching conditions in the internal vertex. As spectral characteristics,we consider the spectrum of the main problem together with the spectra of two Dirichlet-Dirichlet problems and one Robin-Dirichlet problem on the edges of the graph and investigate their properties and asymptotic behavior. We prove that if these four spectra do not intersect, then the inverse problem of recovering the operator is uniquely solvable.We give an algorithm for the solution of the inverse problem with respect to this quadruple of spectra.


Sign in / Sign up

Export Citation Format

Share Document