Feature Selection of Motor Imagery EEG Signals Using Firefly Temporal Difference Q-Learning and Support Vector Machine

Author(s):  
Saugat Bhattacharyya ◽  
Pratyusha Rakshit ◽  
Amit Konar ◽  
D. N. Tibarewala ◽  
Ramadoss Janarthanan
2013 ◽  
Vol 52 (2) ◽  
pp. 131-139 ◽  
Author(s):  
Saugat Bhattacharyya ◽  
Abhronil Sengupta ◽  
Tathagatha Chakraborti ◽  
Amit Konar ◽  
D. N. Tibarewala

Repositor ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Hendra Saputra ◽  
Setio Basuki ◽  
Mahar Faiqurahman

AbstrakPertumbuhan Malware Android telah meningkat secara signifikan seiring dengan majunya jaman dan meninggkatnya keragaman teknik dalam pengembangan Android. Teknik Machine Learning adalah metode yang saat ini bisa kita gunakan dalam memodelkan pola fitur statis dan dinamis dari Malware Android. Dalam tingkat keakurasian dari klasifikasi jenis Malware peneliti menghubungkan antara fitur aplikasi dengan fitur yang dibutuhkan dari setiap jenis kategori Malware. Kategori jenis Malware yang digunakan merupakan jenis Malware yang banyak beredar saat ini. Untuk mengklasifikasi jenis Malware pada penelitian ini digunakan Support Vector Machine (SVM). Jenis SVM yang akan digunakan adalah class SVM one against one menggunakan Kernel RBF. Fitur yang akan dipakai dalam klasifikasi ini adalah Permission dan Broadcast Receiver. Untuk meningkatkan akurasi dari hasil klasifikasi pada penelitian ini digunakan metode Seleksi Fitur. Seleksi Fitur yang digunakan ialah Correlation-based Feature  Selection (CSF), Gain Ratio (GR) dan Chi-Square (CHI). Hasil dari Seleksi Fitur akan di evaluasi bersama dengan hasil yang tidak menggunakan Seleksi Fitur. Akurasi klasifikasi Seleksi Fitur CFS menghasilkan akurasi sebesar 90.83% , GR dan CHI sebesar 91.25% dan data yang tidak menggunakan Seleksi Fitur sebesar 91.67%. Hasil dari pengujian menunjukan bahwa Permission dan Broadcast Receiver bisa digunakan dalam mengklasifikasi jenis Malware, akan tetapi metode Seleksi Fitur yang digunakan mempunyai akurasi yang berada sedikit dibawah data yang tidak menggunakan Seleksi Fitur. Kata kunci: klasifikasi malware android, seleksi fitur, SVM dan multi class SVM one agains one  Abstract Android Malware has growth significantly along with the advance of the times and the increasing variety of technique in the development of Android. Machine Learning technique is a method that now we can use in the modeling the pattern of a static and dynamic feature of Android Malware. In the level of accuracy of the Malware type classification, the researcher connect between the application feature with the feature required by each types of Malware category. The category of malware used is a type of Malware that many circulating today, to classify the type of Malware in this study used Support Vector Machine (SVM). The SVM type wiil be used is class SVM one against one using the RBF Kernel. The feature will be used in this classification are the Permission and Broadcast Receiver.  To improve the accuracy of the classification result in this study used Feature Selection method. Selection of feature used are Correlation-based Feature Selection (CFS), Gain Ratio (GR) and Chi-Square (CHI). Result from Feature Selection will be evaluated together with result that not use Feature Selection. Accuracy Classification Feature Selection CFS result accuracy of 90.83%, GR and CHI of 91.25% and data that not use Feature Selection of 91.67%. The result of testing indicate that permission and broadcast receiver can be used in classyfing type of Malware, but the Feature Selection method that used have accuracy is a little below the data that are not using Feature Selection. Keywords: Classification Android Malware, Feature Selection, SVM and Multi Class SVM one against one


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yuliang Ma ◽  
Xiaohui Ding ◽  
Qingshan She ◽  
Zhizeng Luo ◽  
Thomas Potter ◽  
...  

Support vector machines are powerful tools used to solve the small sample and nonlinear classification problems, but their ultimate classification performance depends heavily upon the selection of appropriate kernel and penalty parameters. In this study, we propose using a particle swarm optimization algorithm to optimize the selection of both the kernel and penalty parameters in order to improve the classification performance of support vector machines. The performance of the optimized classifier was evaluated with motor imagery EEG signals in terms of both classification and prediction. Results show that the optimized classifier can significantly improve the classification accuracy of motor imagery EEG signals.


Sign in / Sign up

Export Citation Format

Share Document