Data-point and feature selection of motor imagery EEG signals for neural classification of cognitive tasks in car-driving

Author(s):  
Anuradha Saha ◽  
Amit Konar ◽  
Pratyusha Das ◽  
Basabdatta Sen Bhattacharya ◽  
Atulya K. Nagar
2013 ◽  
Vol 52 (2) ◽  
pp. 131-139 ◽  
Author(s):  
Saugat Bhattacharyya ◽  
Abhronil Sengupta ◽  
Tathagatha Chakraborti ◽  
Amit Konar ◽  
D. N. Tibarewala

2021 ◽  
Vol 11 (15) ◽  
pp. 6983
Author(s):  
Maritza Mera-Gaona ◽  
Diego M. López ◽  
Rubiel Vargas-Canas

Identifying relevant data to support the automatic analysis of electroencephalograms (EEG) has become a challenge. Although there are many proposals to support the diagnosis of neurological pathologies, the current challenge is to improve the reliability of the tools to classify or detect abnormalities. In this study, we used an ensemble feature selection approach to integrate the advantages of several feature selection algorithms to improve the identification of the characteristics with high power of differentiation in the classification of normal and abnormal EEG signals. Discrimination was evaluated using several classifiers, i.e., decision tree, logistic regression, random forest, and Support Vecctor Machine (SVM); furthermore, performance was assessed by accuracy, specificity, and sensitivity metrics. The evaluation results showed that Ensemble Feature Selection (EFS) is a helpful tool to select relevant features from the EEGs. Thus, the stability calculated for the EFS method proposed was almost perfect in most of the cases evaluated. Moreover, the assessed classifiers evidenced that the models improved in performance when trained with the EFS approach’s features. In addition, the classifier of epileptiform events built using the features selected by the EFS method achieved an accuracy, sensitivity, and specificity of 97.64%, 96.78%, and 97.95%, respectively; finally, the stability of the EFS method evidenced a reliable subset of relevant features. Moreover, the accuracy, sensitivity, and specificity of the EEG detector are equal to or greater than the values reported in the literature.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Jin-Jia Wang ◽  
Fang Xue ◽  
Hui Li

Feature extraction and classification of EEG signals are core parts of brain computer interfaces (BCIs). Due to the high dimension of the EEG feature vector, an effective feature selection algorithm has become an integral part of research studies. In this paper, we present a new method based on a wrapped Sparse Group Lasso for channel and feature selection of fused EEG signals. The high-dimensional fused features are firstly obtained, which include the power spectrum, time-domain statistics, AR model, and the wavelet coefficient features extracted from the preprocessed EEG signals. The wrapped channel and feature selection method is then applied, which uses the logistical regression model with Sparse Group Lasso penalized function. The model is fitted on the training data, and parameter estimation is obtained by modified blockwise coordinate descent and coordinate gradient descent method. The best parameters and feature subset are selected by using a 10-fold cross-validation. Finally, the test data is classified using the trained model. Compared with existing channel and feature selection methods, results show that the proposed method is more suitable, more stable, and faster for high-dimensional feature fusion. It can simultaneously achieve channel and feature selection with a lower error rate. The test accuracy on the data used from international BCI Competition IV reached 84.72%.


Sign in / Sign up

Export Citation Format

Share Document