Discrete Semigroups and Cosine Operators

Author(s):  
Ravi P. Agarwal ◽  
Claudio Cuevas ◽  
Carlos Lizama
Keyword(s):  
Author(s):  
PRAKASH A. DABHI ◽  
DARSHANA B. LIKHADA

Abstract Let $(G_1,\omega _1)$ and $(G_2,\omega _2)$ be weighted discrete groups and $0\lt p\leq 1$ . We characterise biseparating bicontinuous algebra isomorphisms on the p-Banach algebra $\ell ^p(G_1,\omega _1)$ . We also characterise bipositive and isometric algebra isomorphisms between the p-Banach algebras $\ell ^p(G_1,\omega _1)$ and $\ell ^p(G_2,\omega _2)$ and isometric algebra isomorphisms between $\ell ^p(S_1,\omega _1)$ and $\ell ^p(S_2,\omega _2)$ , where $(S_1,\omega _1)$ and $(S_2,\omega _2)$ are weighted discrete semigroups.


1983 ◽  
Vol 35 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Alan L. T. Paterson

In [11] it is shown that the deficiency of a translation experiment with respect to another on a σ-finite, amenable, locally compact group can be calculated in terms of probability measures on the group. This interesting result, brought to the writer's notice by [1], does not seem to be as wellknown in the theory of amenable groups as it should be. The present note presents a simple proof of the result, removing the σ-finiteness condition and repairing a gap in Torgersen's argument. The main novelty is the use of Wendel's multiplier theorem to replace Torgersen's approach which is based on disintegration of a bounded linear operator from L1(G) into C(G)* for G σ-finite (cf. [5], VI.8.6). The writer claims no particular competence in mathematical statistics, but hopes that the discussion of the above result from the “harmonic analysis” perspective may prove illuminating.We then investigate a similar issue for discrete semigroups. A set of transition operators, which reduce to multipliers in the group case, is introduced, and a semigroup version of Torgersen's theorem is established.


2017 ◽  
Vol 38 (8) ◽  
pp. 3012-3041 ◽  
Author(s):  
MORITZ GERLACH ◽  
JOCHEN GLÜCK

If $(T_{t})$ is a semigroup of Markov operators on an $L^{1}$-space that admits a non-trivial lower bound, then a well-known theorem of Lasota and Yorke asserts that the semigroup is strongly convergent as $t\rightarrow \infty$. In this article we generalize and improve this result in several respects. First, we give a new and very simple proof for the fact that the same conclusion also holds if the semigroup is merely assumed to be bounded instead of Markov. As a main result, we then prove a version of this theorem for semigroups which only admit certain individual lower bounds. Moreover, we generalize a theorem of Ding on semigroups of Frobenius–Perron operators. We also demonstrate how our results can be adapted to the setting of general Banach lattices and we give some counterexamples to show optimality of our results. Our methods combine some rather concrete estimates and approximation arguments with abstract functional analytical tools. One of these tools is a theorem which relates the convergence of a time-continuous operator semigroup to the convergence of embedded discrete semigroups.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Aftab Khan ◽  
Gul Rahmat ◽  
Akbar Zada

We prove that a discrete semigroup𝕋={T(n):n∈ℤ+}of bounded linear operators acting on a complex Banach spaceXis uniformly exponentially stable if and only if, for eachx∈AP0(ℤ+,X), the sequencen↦∑k=0n‍T(n-k)x(k):ℤ+→Xbelongs toAP0(ℤ+,X). Similar results for periodic discrete evolution families are also stated.


2014 ◽  
Vol 14 (1) ◽  
pp. 149-155 ◽  
Author(s):  
Akbar Zada ◽  
Nisar Ahmad ◽  
Ihsan Ullah Khan ◽  
Faiz Muhammad Khan

Sign in / Sign up

Export Citation Format

Share Document