Efficient Consideration of Soft Time Windows in a Large Neighborhood Search for the Districting and Routing Problem for Security Control

Author(s):  
Bong-Min Kim ◽  
Christian Kloimüllner ◽  
Günther R. Raidl
Algorithms ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 243 ◽  
Author(s):  
Grigorios D. Konstantakopoulos ◽  
Sotiris P. Gayialis ◽  
Evripidis P. Kechagias ◽  
Georgios A. Papadopoulos ◽  
Ilias P. Tatsiopoulos

The Vehicle Routing Problem with Time Windows (VRPTW) is an NP-Hard optimization problem which has been intensively studied by researchers due to its applications in real-life cases in the distribution and logistics sector. In this problem, customers define a time slot, within which they must be served by vehicles of a standard capacity. The aim is to define cost-effective routes, minimizing both the number of vehicles and the total traveled distance. When we seek to minimize both attributes at the same time, the problem is considered as multiobjective. Although numerous exact, heuristic and metaheuristic algorithms have been developed to solve the various vehicle routing problems, including the VRPTW, only a few of them face these problems as multiobjective. In the present paper, a Multiobjective Large Neighborhood Search (MOLNS) algorithm is developed to solve the VRPTW. The algorithm is implemented using the Python programming language, and it is evaluated in Solomon’s 56 benchmark instances with 100 customers, as well as in Gehring and Homberger’s benchmark instances with 1000 customers. The results obtained from the algorithm are compared to the best-published, in order to validate the algorithm’s efficiency and performance. The algorithm is proven to be efficient both in the quality of results, as it offers three new optimal solutions in Solomon’s dataset and produces near optimal results in most instances, and in terms of computational time, as, even in cases with up to 1000 customers, good quality results are obtained in less than 15 min. Having the potential to effectively solve real life distribution problems, the present paper also discusses a practical real-life application of this algorithm.


2020 ◽  
Vol 4 (1) ◽  
pp. 35-46
Author(s):  
Winarno (Universitas Singaperbangsa Karawang) ◽  
A. A. N. Perwira Redi (Universitas Pertamina)

AbstractTwo-echelon location routing problem (2E-LRP) is a problem that considers distribution problem in a two-level / echelon transport system. The first echelon considers trips from a main depot to a set of selected satellite. The second echelon considers routes to serve customers from the selected satellite. This study proposes two metaheuristics algorithms to solve 2E-LRP: Simulated Annealing (SA) and Large Neighborhood Search (LNS) heuristics. The neighborhood / operator moves of both algorithms are modified specifically to solve 2E-LRP. The proposed SA uses swap, insert, and reverse operators. Meanwhile the proposed LNS uses four destructive operator (random route removal, worst removal, route removal, related node removal, not related node removal) and two constructive operator (greedy insertion and modived greedy insertion). Previously known dataset is used to test the performance of the both algorithms. Numerical experiment results show that SA performs better than LNS. The objective function value for SA and LNS are 176.125 and 181.478, respectively. Besides, the average computational time of SA and LNS are 119.02s and 352.17s, respectively.AbstrakPermasalahan penentuan lokasi fasilitas sekaligus rute kendaraan dengan mempertimbangkan sistem transportasi dua eselon juga dikenal dengan two-echelon location routing problem (2E-LRP) atau masalah lokasi dan rute kendaraan dua eselon (MLRKDE). Pada eselon pertama keputusan yang perlu diambil adalah penentuan lokasi fasilitas (diistilahkan satelit) dan rute kendaraan dari depo ke lokasi satelit terpilih. Pada eselon kedua dilakukan penentuan rute kendaraan dari satelit ke masing-masing pelanggan mempertimbangan jumlah permintaan dan kapasitas kendaraan. Dalam penelitian ini dikembangkan dua algoritma metaheuristik yaitu Simulated Annealing (SA) dan Large Neighborhood Search (LNS). Operator yang digunakan kedua algoritma tersebut didesain khusus untuk permasalahan MLRKDE. Algoritma SA menggunakan operator swap, insert, dan reverse. Algoritma LNS menggunakan operator perusakan (random route removal, worst removal, route removal, related node removal, dan not related node removal) dan perbaikan (greedy insertion dan modified greedy insertion). Benchmark data dari penelitian sebelumnya digunakan untuk menguji performa kedua algoritma tersebut. Hasil eksperimen menunjukkan bahwa performa algoritma SA lebih baik daripada LNS. Rata-rata nilai fungsi objektif dari SA dan LNS adalah 176.125 dan 181.478. Waktu rata-rata komputasi algoritma SA and LNS pada permasalahan ini adalah 119.02 dan 352.17 detik.


Sign in / Sign up

Export Citation Format

Share Document