A Hybrid of Fractal Code Descriptor and Harmonic Pattern Generator for Improving Speech Recognition of Different Sampling Rates

Author(s):  
Rattaphon Hokking ◽  
Kuntpong Woraratpanya
2019 ◽  
Vol 62 (6) ◽  
pp. 2009-2017
Author(s):  
Yuxia Wang ◽  
Zhaoyu Lu ◽  
Xiaohu Yang ◽  
Chang Liu

2008 ◽  
Vol 18 (1) ◽  
pp. 19-24
Author(s):  
Erin C. Schafer

Children who use cochlear implants experience significant difficulty hearing speech in the presence of background noise, such as in the classroom. To address these difficulties, audiologists often recommend frequency-modulated (FM) systems for children with cochlear implants. The purpose of this article is to examine current empirical research in the area of FM systems and cochlear implants. Discussion topics will include selecting the optimal type of FM receiver, benefits of binaural FM-system input, importance of DAI receiver-gain settings, and effects of speech-processor programming on speech recognition. FM systems significantly improve the signal-to-noise ratio at the child's ear through the use of three types of FM receivers: mounted speakers, desktop speakers, or direct-audio input (DAI). This discussion will aid audiologists in making evidence-based recommendations for children using cochlear implants and FM systems.


1998 ◽  
Vol 41 (2) ◽  
pp. 285-299 ◽  
Author(s):  
Mark C. Flynn ◽  
Richard C. Dowell ◽  
Graeme M. Clark

2009 ◽  
Vol 18 (1) ◽  
pp. 3-12
Author(s):  
Andrea Vovka ◽  
Paul W. Davenport ◽  
Karen Wheeler-Hegland ◽  
Kendall F. Morris ◽  
Christine M. Sapienza ◽  
...  

Abstract When the nasal and oral passages converge and a bolus enters the pharynx, it is critical that breathing and swallow motor patterns become integrated to allow safe passage of the bolus through the pharynx. Breathing patterns must be reconfigured to inhibit inspiration, and upper airway muscle activity must be recruited and reconfigured to close the glottis and laryngeal vestibule, invert the epiglottis, and ultimately protect the lower airways. Failure to close and protect the glottal opening to the lower airways, or loss of the integration and coordination of swallow and breathing, increases the risk of penetration or aspiration. A neural swallow central pattern generator (CPG) controls the pharyngeal swallow phase and is located in the medulla. We propose that this swallow CPG is functionally organized in a holarchical behavioral control assembly (BCA) and is recruited with pharyngeal swallow. The swallow BCA holon reconfigures the respiratory CPG to produce the stereotypical swallow breathing pattern, consisting of swallow apnea during swallowing followed by prolongation of expiration following swallow. The timing of swallow apnea and the duration of expiration is a function of the presence of the bolus in the pharynx, size of the bolus, bolus consistency, breath cycle, ventilatory state and disease.


2008 ◽  
Author(s):  
Kristie Nemeth ◽  
Nicole Arbuckle ◽  
Andrea Snead ◽  
Drew Bowers ◽  
Christopher Burneka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document