AbstractOur daily life is realized by the complex orchestrations of diverse brain functions including perception, decision, and action. One of the central issues in cognitive neuroscience is to reveal the complete representations underlying such diverse functions. Recent studies have revealed representations of natural perceptual experiences using encoding models1–5. However, there has been little attempt to build a quantitative model describing the cortical organization of multiple active, cognitive processes. Here, we measured brain activity using functional MRI while subjects performed over 100 cognitive tasks, and examined cortical representations with two voxel-wise encoding models6. A sparse task-type encoding model revealed a hierarchical organization of cognitive tasks, their representation in cognitive space, and their mapping onto the cortex. A cognitive factor encoding model utilizing continuous intermediate features by using metadata-based inferences7 predicted brain activation patterns for more than 80 % of the cerebral cortex and decoded more than 95 % of tasks, even under novel task conditions. This study demonstrates the usability of quantitative models of natural cognitive processes and provides a framework for the comprehensive cortical organization of human cognition.